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RANDOM PACKING AND RANDOM COVERING SEQUENCES

Clifton Dickerson Sutton

In a sequential packing problem, random objects are uniformly and independently selected

* - from some space. A selected object is either packed or rejected, depending on the distance
between it and the nearest object which has been previously packed. A saturated packing

• is said to exist when it is no longer possible to pack any additional selections. The random

packing density is the average proportion of the space which is occupied by the packed objects

at saturation.

Results concerning the time of the first rejection in a packing sequence are given in

Chapter 1. The accuracy of some common approximation formulas is investigated for several
settings. The problems considered may be thought of as gefieralizations of the classical birthday

problem.

Exact results concerning random packing densities are generally known only for some
packing sequences in one-dimensional spaces. In Chapter 2, the packing densities of various

computer generated codes are examined. These stochastically constructed codes provide a con-
venient way to study packing in multidimensional spaces. Asymptotic approximation formulas

are given for the packing densities which arise from several different coding schemes. In one
special case considered, a new method is found for approximating a planar density. The result-,;

obtained agrees closely with estimates obtained by others.

In Chapter 3 the distribution of the number of random selections needed to achieve a
saturated packing is considered. In each of the settings examined, the results are compared
with analogous results from an associated random covering problem.
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Chapter 0

Introduction

Sequential packing and covering problems have been investigated by numerous au-

thors; however, there are quite a few interesting questions which have remained unan-

swered. Here some stopping rules arising in various packing and covering sequences are

examined, and some fresh results concerning their distributions are presented.

The basic packing problem can be briefly described as follows. Random objects are

sequentially selected from some space. A selected object is considered packed if it does

not overlap any of the previously packed objects, otherwise the object is rejected. The

selection process continues until it is no longer possible to pack any additional objects. The

chief problem is to determine how much of the space is covered by the terminal collection

of packed objects. So far, explicit solutions have been obtained only for packing sequences

on one-dimensional spaces.

Chapter 1 examines the time of the first rejection in packing sequences. The prob-

lems considered, which will be called collision problems, may be viewed as generalizations

of a familiar birthday problem where people are sequentially sampled at random until a

matching of birthdays occurs. Applying the usual simplifying assumptions, this simple

birthday setting may be modeled as follows. A sequence C 1 , C2 , • of independent selec-

tions are made from the space S = {1,2,... , n}, where n represents the number of days

in a year. The selections are made according to a uniform distribution, i.e.

P{C, = k) = n-1

for 1 < k < n and for each i. Letting r count the number of selections needed to obtain

. . ...... . . . .......-- - .
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2 Chapter 0: Introduction

the first duplication of outcomes, it is well known that for fixed t > 0

(0.1) P >

(0.1) as n - 00,

and (see [31]) that

(0.2) E[T] 7" as n - oo.
,,.57

A new result established in Chapter 1 yields, for this simple birthday setting, that '-

(0.3) P{i > [n0 ]} ~ exp I n2*- 1 as n - mc

for 0 < a < 2/3. In other words (0.3) says that the common approximation formula (see

[141)

(0.4) P{r > k} exp(-k 2 /2n),

which is suggested by (0.1), will hold reasonably well whenever k < n213 and n is suffi- 'V,

ciently large. A direct calculation in a related collision problem suggests that the equiva-

lence stated in (0.3) does not hold for values of a which are greater than or equal to the

upper bound 2/3. ..

Other setlings for collision problems are also examined in Chapter 1. For the one-

dimensional cases of packing arcs of equal length on the discrete and continuous circles,

with a collision occurring if two arcs overlap, results similar to (0.1), (0.2), and (0.3) are

obtained. However, for collision problems in higher dimensional spaces only analogs of

(0.1) are proved exactly, with plausible arguments and simulation results used to provide p

support for the approximation

(0.5) E'] S

which seems to hold in a large number of cases. In (0.5), p is used to denote the probability

that two arbitrary random selections collide.

The time to the first collision is also investigated for several variations where arcs

of unequal iength are packed on the circle. These collision settings do not seem to have

9- II



Chapter 0- Introduction 3

been previously considered by others. For cases where the arc lengths are i.i.d. random

variables, upper and lower bounds are obtained for Pfr > k. and results are given which

indicate that the approximation formula (0.5) is not applicable for these settings.

Random packing densities for various random coding schemes are investigated in

Chapter 2. Stochastically constructed codes provide a convenient way to study random

packing in high-dimensional spaces, and a few special cases yield limiting values for packing

densities which may be compared with analogous values obtained by others.

Itoh and Solomon [27] have studied the densities for cases where binary codewords are

randomly packed by Hamming distance. They obtained approximation formulas for the

densities in some of the cases which they investigated. In Section 2.2 a general approxima-

tion formula is proposed which not only does better than the approximations given in [27).

it also does reasonably well for several additional cases. Letting n denote the total number

of possible codewords and p be the probability that two arbitrary codewords collide, it is

found that the random packing densities appear to be asymptotically approximated by a

function of np which contains only one empirical constant.

Other sections in Chapter 2 examine random q-ary codes packed using various met-

rics. For the packing scheme discussed in Section 2.5, a two-dimensional analog of a

one-dimensional result of Mackenzie [36] is obtained. This new formula yields an approxi-

mation for a planar packing density which is in close agreement with estimates determined

in previous studies.

The total number of random selections required to achieve a saturated packing is

examined in the final chapter. Chapter 3 also considers the total number of selections

required to completely cover the space. In this variation, the random objects are allowed

to overlap and none of the selections are rejected, and it is of interest to determine how

many selections are required until each point of the space is covered by at least one object.

A few such covering results have been found by Flatto and several others; however. the

time to saturation does not seem to have been previously considered. It is found that the

average number of selections required for saturation exceeds the average number required
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for coverage in some settings, while the opposite is true in other cases. One easily proved,

A yet somewhat surprising result, is that for some packing sequences on continuous spaces

S. the expected number of selections required for saturation is infinite.

-0 r

i, p.I I
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Chapter 1

The Time to the Initial Collision
of a Packing Sequence

1.1. Introduction

Let S be either a finite space, a k-dimensional unit torus (k E {1,2.... or the

surface of a sphere in Ek (k E {2,3,. .}), and suppose that points C1 E S, C 2 E S,. are

independently selected according to a uniform distribution. Thus if S is the finite space

{s]TS2,'9 ,,} then

P{C, = sj} =,n-1

for i= 1.2.... and 1 < j < n. If S is infinite then

P{C, E B} = BI (i = 1, 2,-.) iL

where I denotes Lebesgue measure and B is any measurable set.

Let p be a metric on S. Then for some specified 6 > 0, two points C, and C, are said

to collide provided that p(Ci,C,) < 6. If this condition is not met, then the points are

said to be disjoint. A set of three or more points is said to be disjoint, or fairly packed, if

the points are pairwise disjoint. In the literature, a collision is sometimes called a match

or a coincidence.

Let C, A Cj denote the event that C, and C, collide. If C, and C, are disjoint, write

C, VC,. Denoting Uj 1 {c, } by C(j), write Ck AC(j) if Ck collides with at least one member

of C(j). Let p denote the probability that two arbitrary points collide. i.e. p = P{C, A C,}

(i 5 j). Note that p will always be positive.

O



6 Chapter 1: The Time to the Initial Collision of a Packing Sequence
.1

Consider C 1 ,C 2... chosen independently and uniformly from S. S, M. P, 6 and

{C },=1 will collectively be called a packing sequence. Define a stopping time r by

{r=k} ={#C(k - 1) = k - 1, C(k - 1) is disjoint, Ck A C(k - 1)).

Thus i- equals k if and only if Ck is involved in the first collision that occurs as the points

V C 1 ,C 2 ,.'" are selected one after another. Furthermore, if r exceeds k, then the first k

points of the sequence are pairwise disjoint. Using the terminology introduced above, it

can also be said that the first k points have been fairly packed whenever r exceeds k. For

this reason r is called the time to the initial collision of a packing sequence.

For certain choices of S. p. and 6, r is a random variable for which some results are

known. For example. several varieties of what are commonly called birthday problems can

be treated by suitably defining S, p, and 6. In Sections 1.3, 1.4, 1.7,and 1.S which follow.

some known results concerning r will be reviewed and some extensions and new results will

be obtained, for some particular metric spaces. Simple applications will be mentioned,

and some examples will be presented. Sections 1.5 and 1.6 will examine some related

problems for which not all of the criteria needed for a packing sequence as defined here

:- are met. However before proceeding with any specific packing sequence. it is convenient

to derive first some results which are true for a large class of choices of (S,,i) and 6.

1.2. Sequenccs of Equivalent Points

A packing sequence will be said to consist of equivalent points if the probability that

a randomly selected point collides with any given element of the space S is equal to the

probability that two arbitrary points collide. That is, the sequence has equivalent points

if for each i and for every s E S

P{C, A s) = P{g(C,, s) < b) = p.

It will be seen in the next section that the packing sequence associated with the

classical birthday problem consists of equivalent points. So do the remaining packing

sequences of Section 1.3, and also those discussed in Sections 1.4 and 1.7. The first

.%
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packing sequence discussed in Section 1.8 consists of equivalent points; however, it will 

be shown that the alternative packing sequence for ternary n-tuples found in that section

does not.

As a simple example of a packing sequence which does not consist of equivalent S

points, consider the one having S = {1,2.3.4,5.6,7}. p(x,y) = Ix - yl, and b = 3. Here

P{C,A} = P{CA7} = 3. P{C,A2}=P{CA6} = ! and P{CA3}=P{C,A4} =

P{C', A5} = . Since

p= +-(4 +-3(1 =-'9

it is clear that the sequence does not possess the equivalent points property that P{C, A

s} = p for every s E S. In both this example and the non-equivalent points case of Section

1.S. it can be noted that the metric p creates a boundary effect on the space S. If the

metric above is changed to

Ix - y1 if Ix - yj < 3

7-Ix-yj otherwise

in order to impose a torus quality on the points of S, then the packing sequence now

consists of equivalent points. This is because for each s E S

P{C, A s} = p = 5 " h

7

The results presented in this section hold for any 6 > 0 and metric space (S, p) which

provide a packing sequence of equivalent points. The corresponding uniform probability

measure P will always be as specified in Section 1.1. .

A lower bound for P{r > k} is easy to establish.

Proposition 1.1. For k > 2,

P{r > k} W- ( 1 j p ) ifp< (k- 1)- 1

(0 otherwise

,;.... ".'. :.'.:. .,, S



8 Chapter 1: The Time to the Initial Collision of a Packing Sequence

Proof. Using Boole's inequality

P{r=k1r >k-1}= P{C, AC uC2ACku...uCI ACk > k- 1)
k-i

< P{C, A I r > k - 1)
J=1

k-i

= - P{C, ACk)

= (k - 1)p.

Thus
P{r > k) = P{- > k- 1)- P{r = k)

= (1- P{T = kI r > k - 1))P{r > k- 1)

_> (1 - (k - l)p)P{r > k - 1).

For p _ (k - 1)- 1 . simple induction yields

P{r > k} (1 -(k- 1)p)(1-(k-2)p)...(1-p)P{r > 1).

Noting that Pir > 1) = 1 completes the proof. I

It can be scen b. examining (1.11) of the next section that this lower bound is

sharp for the sequence of the simple birthday problem. Thus. on the average, the waiting

time for a coincidence will tend to be at least as long for any other packing sequence

consisting of equivalent points and having the same value for p (equal to n - 1) as it is for

the corresponding simple birthday sequence.

Since rlj,=(j - jp) becomes cumbersome to compute for large k, it ik desirable to

establish a more convenient lower bound. Lemma 1.1 gives a lower bound which can be

easily used to establish asymptotic results concerning the distribution of r.

Lemma 1.1. For any real numbers n and o satisfying n > 3 and a < I and any

integer k such that 2 :_ k < n,

r> e-0/ 1.kn-) if k<n
n 0 otherwise

IVe ', P, 1r, 'Vr IP WV r u-, P 4 ~ .,
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~Proof. The case for k > no is trivial. For k < n' observe that

,, nk-(n - k)r(n - k)

Judicious application of the double inequality

.4

,- i (.1)v/2,-x -, - < r(x) < v62-7x'-1l2e - "+

to the gamma functions above yields

r,3= n n x 12(n -k))"

• : Hence it suffices to show

eqe' '  !n+ l2l " -T ]-ep( n  k 12(nl- k)) >1

9or equivalently

P .(1T2) hn-k + log 1 k )  +log1 k 2 k o r > 0

• € Since the expansion

log I = + t + t 3 + ..(it! < 1)

yields the inequalit

(1.3) log(l - I)-' > 1 l trn (0 < I < 1, Al > 1),

it follows that the left side of (1.2) exceeds

(n-k) ++ +--+ -k(: n xn p ( 12(n - k)

no 2n2 12(n - k)"

Thus it suffices to show that (1.4) is greater than zero, or equivalently that

(1.2) (n(n-k ) l (n1 -k) k)> 1.

no-t 2 n23
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But this is indeed the case since the left side of (1.5) exceeds

12n-n)2 1 n 3 0-1'

24(nn 1-'1- 1 I~-
22

/3n

> 1.

The corollary below follows immediately from Proposition 1.1 and Lemmna 1.1.

Corollary. For o real and k an integer, if p, ct and k satisfy p a . < 2 and k > 2.

4. then

-~ 
2

Pf~r> k} > C- 2P(1 - kp') if k < -

P~r > k} 0 otherwise.

An alternative lower bound for rfl -1(1 -jp) can be obtained by a different technique.

Although this lower bound is tighter than the one found above, note that the nontrivial

portion still requires that k does not exceed n2 / 3 .

.4 Lemma 1.2. For any n > 3 and any integer k > 2,

> 0 otherwise.

Proof. Since

V.V

log(1~JA I )>-



Section 1.2: Sequences of Equivaleit Points 11

are met and k < n2/13 , it follows that if k < n 213 then

3=='

expki (_ _ (j)2)}

'(k -k (k -1)k(2k - 1)
exp - 6n2

k2

> exp 2n 32

Then since e' > 1 -t for all t < 3 and since 3  < , it follows from above that if

k < n21 3 then
k-1 j)\/i V

Corollary. For any p _ and any integer k > 2,

> ( k3p2) if k < p- 2 /3

P{r > k} 3__ 1

1, > 0 otherwise.

It is also possible to establish an upper bound for P{r > k}.

Proposition 1.2. Let Al be the largest integer ni satisfying

4 24

Then

e- L -P for 2<k<MP{7- > k} < _ ,
e 2 otherwise.

Proof. Since P{Cr A C,, Ct A C ,} = p2 if the set {r, s} is not identical to the set

{f, u}, it follows by a well-known inclusion-exclusion argument that for k > 3,

P{r > k} { = P <

< 1-Z P{CAC,}+ Z P{C, AC,,C, ACu}

r~s r<s84<u~s~u
{r,s)*{i,u)

5U.( ~ Mp S, -*-



12 Chapter 1: The Time to the Initial Collision of a Packing Sequence

ft(16)=1 (k)P + (ki)) P2.

Now truncating the Taylor expansion of e-L ' P yields

Lt=i) (k - 1)2 (k-i1)4 2 (k-i1)6 3 1
(1.7) e- >1 (-1>2- P+ 8 p - 148 (k< 1 + ._

The condition that (1.6) is less than or equal to the right side of (1.7) simplifies to

(1.S) (20-5k+1) (k-i)5 2 <
4 24 -

Hence it follows that

P{'r > k} < e- LV -P

whenever (1.8) is true and 3 < k < 1 + 12. Over k > 2., the left side of (1.8) increases

with k and is not bounded from above, so that the existence of a unique M is guaranteed.

Furthermore, whatever p is, 2 < A! < 1 + (E'. The proposed upper bound has now been

established for 3 < k < M. For k > Al it is trivial that

P 7 > k} _< Pf 7 > M}I < e-Lp

For k =2 note that

P{r >2} -p< ep  2 . I

Corollary. Let
{ p-1/2] if P -2>4

(p) F I/ / otherwise.

Then

Pf7r > k) <Z{ e-2 for2<k< M(p)

otherwise.

Ze Nat
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Proof. Note that M1(p) minfr~p-/ 21,[ 1(2) 15}. Hence

(2M 2  5M m + 1) P+(in- i)5 21M M P+4 24

(M 1) P ( - y, 2 m =Mf(P)+1

2 24

< 1

and so M1(p) + 1 does not exceed the value Al specified in the hypothesis of Proposition

1.2. Thus it follows from the proposition, and the fact that Pj-r > k) is nonincreasing

with k. that the proposed upper bound is valid. I

Proposition 1.3. For fixed t > 0,

P< >} e as p 10

Proof. For p sufficiently small, the preceding corollary may be used to attain the

following upppr bound.

" exp(t V2 
-/P _ 1)72}

f '1 2

"i - 7 p> tj >exp-1 2 - v*2t pl/ 6}.

These two bounds, plus the sandwiching theorem for limits, yield

lim e t

as required.

~~- "- v- "'rU. a,~U II, I *' 21". or 7, A' v' - .1
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It should be noted that for the special case of the simple birthday problem the result given

in the previous proposition is known to Diaconis [9, and probably others who have studied PR

the problem.

The result stated in the next proposition is of a different form than the more common

types of collision problem results, as many previous results treat P{r > k) for either k

fixed or k being constrained to be of the order O(p-/ 2 ). The restriction that a be less

than ] arises from a similar restriction in Proposition 1.2. In Sections 1.3 and 1.4, where

the distribution of r is known exactly. the following results will be strengthened to hold

for all 0 < a < 2. For the special case of a = this result may be obtained for numerous

settings from a Poisson limit of Silverman and Brown [52] Their results. which arise from %
a method involving the U-statistics of Hoeffding [21], will be discussed further in the next

section.

Proposition 1.4. For 0 < a <25.

P{r > VT-°} -,- exp(--P -2) as p o.
2

Proof. Note that
(12 ) '/5 (12'/5)- _1

P 2 P 2/5

>0

so that [p-11 must be less than or equal to 1(12 )'/1. Hence, by the corollary to Proposition

1.2,

lbm sup P {r > [p - 1} < lim sup[exp lp1-2* -[ - 1)2p1
-s+ exp(-IPl - 2a) - p+ 2

<lir sup exp [ p 1 - 2. _ (p-- 2 )2

= lim supexp(2p' - 
- 2p)

p- 0 4

-" 1.

- - -
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Section 1.2: Sequences of Equitaicnt Pomnt s 15

Also. by the corollary following Lemma 1.1.

a' _C'

lirninf P,,>E 1 liminf(1 - [P-pJ/2) exp 2P_._Ip-6+~ exp(-1p1-2a) -pOf (2Q [2 P

> lrn inf(l - pl / 2-,exp( 1 P1-2a _ 1-2o~
P-O+ 22

so that it may now be concluded that

urn P{I pi >1 VO
p-o 4 exp(_jp1- 2 a)

Next a lower bound for E[Tr] will be given. A similar upper bound for E~rIr cannot be

produced (by the author) in this general setting since a sufficiently tight~ upper bound for

Pj - > k} has not been determined over a large enough range of k. In subsequent sect ions.

-: where specific metric spaces are considered, nice upper bounds for E[7] are found in those

cases where the distribution of 'r is known precisely.

Theorem 1.1. Let a E ().Then for p < a

2 32 3

T1-jwer bound is asymptotically equivalent to as p 1 0.

Proof. Since r is a nonnegative, integral-valued random variable, it follows from a

f.well-known 
argument that Er f )

k=O

U' However, since r > 2 with probability 1, it is also true that

E(7-1 = 2 + EZP{T> k},

k=2

and so by the corollary following Lemma 1.1

'pVal

k=2
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Since e -2 P(1 - zp ° ) is a positive, decreasing function of z on (2,p-0),

E[r] > 2 + E2 fk e-' (l - xp-)dxr + f'e_ i-(1 - x'd
k=2 JP °

= 2+2 e-2'(1 - p*)dz.

.
2

Since eTP(I - xp') is less than 1 on (0, 1) and is negative on (p-1, oc), it further follows

that

E[r] > e- 2P(1 - xp')dx
0

arip P1~
as claimed. Also note that

lim= lim - pO-1/2 )= 1.p O
+  TIP p-O+

1.3. The Birthday Surprise Revisited

Let S = {1,2... t)} and let

Ix - Y1I if Ix - 91<-
P(z. ) n - Ix- y. otherwise.2

Recalling that 6 represents the minimum separation distance for disjoint points, consider

first the simple case where 6 is taken to be 1. Then two points C, E S and C., E S will

collide if and only if p(C,,C.) = 0, a condition requiring that Ci and C, be the same

element from S.

The sequential selection of C 1 ,C 2 ,.. from S may be thought of as dropping balls

labeled C 1, C 2 ,'" into cells labeled 1, 2,.. , n. For each drop, the probability of the ball

landing in cell j is just 1 (j = 1,2, . .,n). Also the probability that two arbitrary points
4.. n

-r Ci and Cj collide is , since whatever cell the ball C, falls into there exists a 1 in n chance

" that C. will occupy the same cell. Clearly, the packing sequence consists of equivalent

points.
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The initial collision in the sequence will occur the first time a dropped ball lands in

a cell which is already occupied by a previously allocated ball, i.e. r counts the number of

drops required to produce the first double occupancy. Problems concerning the distribu-

tion of r are generally referred to as birthday problems. A common example. sometimes

called the birthday surprise, is to determine the smallest number of people needed in order

for there to be at least an even chance that some pair of them will share the same birthday,

i.e. for n = 365 find the smallest value of k such that P{r > k} <1 .

Some basic aspects of birthday problems are discussed in [14]. and numerous authors

have investigated extensions and generalizations of the simple versions of the problem.

McKinney [37] calculates the probability that at least r out of n randomly selected people

have the same birthday, and Klamkin and Newman [31] determine, asymptotically. the

expected number of people needed in order for r of them to have the same birthday. If

there are n days in the year, then the expected number needed is asymptotically equivalent

to

(r!Pl/?r + I) n(1- ' )

as n tends to infinity. For the case of r = 2. their theorem yields the result

E[r] ~ l as n- oc

2L

where. as before, r is the time of the first match. Blaum et al. [6] present more accurate

asymptotic estimates than tf. e given in [31]. and they also consider the number of people

needed in order to have k different birthdays occur at least r times each. Several other

variations are to be discussed in a forthcoming book by Diaconis and Mosteller, among

them are problems in which birthdays do not occur with equal likelihood, multivariate

versions, and "near- coincidences. Among their findings in each of the settings investigated

is an approximation for the number of people needed in order for there to be an even chance

for a match.

Now consider the case where 6 equals 2. If the n cells are arranged in a circle.

and balls are dropped into them at random, then r counts the number of balls required

%W

%

nn n a- N l - | - - - . . . . .. - - : y
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to obtain the first occurrence of either any cell being doubly occupied or of any pair of

adjacent cells being singly occupied. Clearly

p=P{C,AC,}=3 (i#j).
n2

since whatever cell C, occupies there will be a collision if C. lands in the same cell or

either of the two cells adjacent to it.

Another way to view the situation is as follows. Consider a circle of circumference

n which is divided into n segments. each segment being of arc length 1. The segments

are labeled in order 1,2,.- .. n so that the nth segment is adjacent to the 1st segment. If

C, = j (: n) then place an arc of length 2 on the circle so that it covers exactly the jth

and (j + 1)th segments. If Ci = n then let an arc cover the nth and 1st segments. A

collision will occur whenever any portion of two arcs are overlapping.

This circular representation is also convenient if 6 E {3.4,.. .}. At each step. if C, = j

then cover the segments labeled j, j e 1,- -. ,j (6 - 1) with an arc of length 6, where

stands for addition modulo n. The initial collision occurs the first time any portion of the

circle becomes twice covered. Thus r equals k if the first k - 1 arcs are pairwise disjoint

and the kth arc overlaps at least one of the first k - 1 arcs. Note that U(C,,l = 0 if

C, = CI. Otherwise u(C,.Cj) is just one greater than the number of segments which lie

between the C,th segment and the Cth segment. where the shortest possible portion of

the circle connecting the two segments is considered.

For convenience, in this metric space the stopping time r will be written ?6n,,, where

identifies the minimum separation for disjoint points and n is the number of elements

in S. For example. P{r-.3 65 > k} is just the probability, under reasonable simplifying as-

sumptions. that in a group of k people sampled at random, no pair of them have birthdays

less than a week apart. This type of birthday problem seems to have been investigated

first by Abramson and Moser [1]. and subsequent work on extensions has been done by

Sevast'yanov [48] and Diaconis [9] among others.

For another example, consider the packing problem discussed in [43] and [36]. There

.
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a line of integral length ri is filled sequentially at random with nonoverlapping intervals of

integral length a, their end points having integer coordinates. If a selected interval were to

overlap one which has already been packed, then the interval is rejected and another one

is selected at random. The process continues until it is no longer possible to fairly pack

another interval on the line. Disregarding end effects, the event {r17, > k} corresponds to

having none of the first k intervals rejected.

For c E {1,2,...}, ,, is a random variable having {2,3...,[ + 1} as its set of

9. possible outcomes. P{r, > k} = 1 for all integers k < 2 and P{r, > k} = 0 for all

integers k > [!. For 2 < k < [111. Abramson and Moser [1] proved that

(k - 1)!(n - k(c - 1) - I)P c, > k ) - k -(1.9

(n - k(c 1)-l)(n - k(c -1)- 2). -(n - kc - 1)- (k - 1 H

nk-1

An equivalent form is

(1.10) P{,., > k} = [1 [ (k(c - )- ]

J=1

Setting c equal to 1 yields

wel-nwnP 1 1, > k} .) (1~ _ ) ... (1~ _ k -) (k-=s2

a well-known expression for the probabilities of the basic birthday problem.

The major advancement contained in this section is given by Proposition 1.10, which

states that for 0 < a <

P~r~n [(2r )']]I .- exp [-I21 21 as ni - .

Note that this result implies that, for large n, only for values of k near V/i will

Pfr., > k} be something other than almost zero or almost one, a fact which is known by

Diaconis [9] and perhaps others who have investigated the birthday problem. However.

note that the result also provides a way of estimating what the precise value of P{r,, > k}

is when it is close to 0 or 1. provided that a is not too large.

-. r
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Letting the qth quantile of 7c, denoted by q, be defined as the smallest integer ,c

satisfying P{r < c > q. the above proposition suggests that q should be reasonably

approximated by

4 F(" )lo0g( lif - < e - q

if q < 1 - exp -P 1. It turns out, however, that the approximation is rather

good for even larger q. This is demonstrated by the following example. Let c = 2 and

n = 3000. Then 1- exp [- 2-1 = 1- e-5  .993. A comparison Of q and q for

various values of q is presented below.

q

0.5 38 38

0.9 68 68

0.99 96 96

0.993 99 100

0.995 103 103

0.999 117 118

0.999.5 122 124

0.9999 134 136
S.,

" 1 10-1 150 152

1 - 10-7 176 180

I - 10 - 9  199 204

It is interesting to note that although the difference between 122 and 124 seems slight,

the difference between P{r > 122} = 4.88 x 10- 4 and P{r > 124) = 3.77 x 10- 4 is more

pronounced. Similarly, the difference between 199 and 204 does not appear to be nearly as

drastic as the difference between P{r > 199) = 9.3 x 10- 1 and P{r > 204} = 3.1 x 10-10.

For the special case of a = , the result of Proposition 1.10 has been obtained by2'

several investigators. These include Sevast'yanov (48]. Silverman and Brown [52], Diaconis

[9], and Stein [56]. In fact, for this special case it is possible to state more powerful results

5,,p
:-.- .. .- - - -..', .- -,-. .-.-.- ,,_p.,_, -: , , . . .. , ,.., . . - - -/ _.-,-_. ,,_, ,. - , ,: , (
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than that which is furnished by Proposition 1.10. These more powerful results are generally

known as Poisson approximations.

Consider the basic birthday problem where there are k people, n days in a year, and

it is considered that a match occurs whenever a pair of people have a common birthday.

For this setting the Poisson approximation loosely says that if (') I is approximately equal

to some fixed value A and n is sufficiently large. then

P{# matches = j}

It is not even necessary to require that all birthdays occur with equal likelihood, although

some restrictions on the probabilities are needed. Note that since k is required to be of

the order 0(n'1 2 ). tne j = 0 version of the Poisson approximation is indeed similar to

the a = case of Proposition 1.10. Similar Poisson approximations can be obtained in

collision settings other than the one discussed here.

Now methods similar to those of the previous section will be used to develop bounds

for P ,., > k}. These bounds will in turn be used to establish limit results for the

distribution of 7,, including Proposition 1.10.

It follows from (1.10) that

(1.12) log P{r, > k} = sklog [ - 1)-
n

The inequality

log(l-X) < -z (0 < z <1)

may be applied to each of the terms on the right hand side of (1.12), resulting in

log P > k} <
j=1

(k- 1)k(2c- 1)
2n

Thus the following proposition is immediately established.

.

• , %),..j.- -...,v,-€., ,',-.. ./.'t , Z,:.i"2"-","£"-" ","-,', ° " ."", 4, . ," . - o ., . ,*.,-,, -, , K-r,-x~. *• de, ,' A, ,



22 Chapter I The Time to the Initial Collision or a Packing Sequence

Proposition 1.5.

P{r, > k} < e 2 (k = 2,.., )

Noting that p = LL, the next proposition is just a special case of the corollary

,, following Lemma 1.1.

Proposition 1.6. For a real and k an integer, if n > 3(2c - 1), a and k > 2.

then

P~~r~ ~ I }4 > [i - k( 2  0 exp (k2LLZ) ifk<

> 0 otherwise.

An alternative lower bound is provided by the following proposition. p

Proposition 1.7. Let c. n, and k be integers such that 2 < c < 1728. n > c3 . and

k > 2. Let
S(n)2/ 3 if C < 1 + (2)/ 3

Jl ( c. n) 2

nc otherwise.

Then

(k exp k2(2c-1) if k < AI(c. n)Pfr., > Q) > 1 (--_(c, 1)-) s2(rt-k~c-1)) ..

> 0 otherwise. "

Proof. Consider k < M(c, n) since the other case is trivial.

For convenience let -1 denote (c - 1). Note that

AI~c~) = m {(fl2/3 n2. ',M(, n )= mi n (D21

so that

A13/2 + -,M < n,

or equivalently

M < (n - -yM)'
2 3 .

Therefore. for k < i(c. n)

k < (n- .k) 2
/
3 .
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It follows from 1.9) and (1.1) that
P > kF(n - k-)
P{rc,, > k} = nk-(n - kj - k)F(n - k-) - k)

(n - k )n - k - 1/ 2 exp(-n + k-y)

nk-l(n - kk - k) ' - - +1/2 exp(-n + k + k + 12(,-k-k)

x e1 (k. --12(n -ky - k))

The inequality
1 - > e - ( > 1)

applied to the expression above yields

P{r , >k} - (n-k]7,1J exp ((k- 1)k'y k 12(n -"- k),P

It now suffices to show that if k < (n - I k) 2 /3 then

( k n+k- +k-/2 [k k

2(np____ - (k-1) - k - 12(n - kj -k)

exceeds 1, or equivalently that

(n - kj - k+ 1)log [ (n-k-) +log k (n -. )j/3

k2(2y + 1) (k- 1)kj -+ k
(n - k-t) (n - k-y) 12(n - k-Y - k)

is greater than 0. By (1.3) the above expression exceeds

k k k k2  k k (2, + 1) (k - 1)ky
(nky-)(n.- kj) + k(-yk 2)1 + (n -k-,)2/3 + 2(n -kj. )  (n - k-)

-k- 1k
12(n - k-r - k)

- 2(n - k')) [2 ( n - k-)) - k + 2(n -k)' / ] -21 -

12(nk -2 1

2(n - k') t2( " -) 4 3 - k2)2 12(n - kj - k)'
h_
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Therefore. it suffices to show
k [2(n - k-y)T4 - k 2] > 1( ' )k1

2(n - k) 2 (n-ky-k)'

or equivalently

(1.13) 6(nn- k- )4/3- 1.
(n - k ) 2 n -

Now for all allowable values of n, k and -y,

6(n-k- -k)k 6 [1 ( k-) k

12()

12 (12)

and
[2(n - kj ) 4 /3 

- k2 ] > (n - ky)4/ 3

> (n - n2/3-y)4/3

Sn 4/3 (l - ,.n-1/3 )4/3

> n 4/3 1- 1,

> nc - '/ 3 ,

so that the left side of (1.13) exceeds

12(C-1 1 3 - 2c-10/ 3 ).

For 2 < c < 1728 this expression is greater than 1 as required to complete the proof. I

Proposition 1.8. The lower bound of Proposition 1.7 is greater than or equal to

the lower bound of Proposition 1.6 in all cases where both propositions are applicable.

Proof. It suffices to show that

k k_2_(2c_-_1)

- k(c 1)2/3] exp ( 2( e 1)))

c ~ -,r 1) /3k2 
2 - 1

P. or or w r or
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or equivalently that

(1.14) [i- (n - k(c - 1))2/3 exp( - k3 (c - 1)(2c - 1 )) k 1 (2 --)2/3,

for all c, n. and k which satisfy the hypotheses of both propositions and are such that

k < (2-r)2 3 . Letting - denote c - 1, the left side of (1.14) exceeds

1~~~~ I___ r --n> _ _ - ____n- k-r )2/3I 2~ k(-~ k, n - k- )2 3 2(2 7 +-1)-

Hence it suffices to show that

k(22+1\\2/3 > k k3-y(2,+1)

,n (n - k- 1 /3  2n(rn - k- )

The above inequality will be true if

(1.15) 3 ( 2 -+ 1')2/3 > 1
4 n (n - k-y)2 / 3

and

1 - +" 1 213 k2-y(2, + 1)(1.16) -f I> 7j - ):.

4 n1 2n(n - k-)

Now (1.15) is true if and only if

< (2- + 1)2/3 1 - 8

n I 33/2(21 + 1)]

which holds since
kr(2 -4- 1)2/3 9 <-<1

n n1/3

and

(2-y +12/3 1 -(2-+ 1) 32/3 1- - >i.
+33/2 35/2J%

Also, (1.16) holds whenever

To complete the proof note that the left side above exceeds

1 / (2 1 + 1)/3- _ > - --(2 -+ 13 - 1

i 2

,TP
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which is greater than 1 whatever -r E {1, 2,..-} may be. I

The following proposition is just a special case of Proposition 1.3.

Proposition 1.9. For fixed t > 0,

P ,> e- as n--oc.
I 2c- 1 J

Since the upper bound furnished by Proposition 1.5 is valid over a larger range than

is the upper bound given by Proposition 1.2, the result given in Proposition 1.4 may now

be extended over a larger range as well. The proof of the following proposition is omitted

since it is entirely similar to the proof of Proposition 1.4.

Proposition 1.10. For 0 < a < ',

P{ > ~ L)as n- oc.

In order to investigate the accuracy of the other formulas presented thus far in this

section, consider as an example the simple birthday problem where c equals 1 and n equals

365. (1.11) becomes

k-1

(1.17) P{r1 .36 5 > k} = f 1 - (k 2.-,365).

Proposition 1.5 gives
(k-flk

(1.18) P{ri.36s > k} < e- 735 (k =2,...,365)

and Proposition 1.6 provides

> _rr I- (k =2,. - 50)
(1.19) P{rr.M s> k} e1

> o (k > 51)

Proposition 1.9 suggests the often used approximation,

k
2

(1.20) P{rir3 s > k} : e--.

Below the right hand sides of (1.17), (1.18), (1.19), and (1.20) are compared for severa

values of k.

S!

p1g-.j~ FF F F-. .a
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lower bound exact prob. upper bound approx.

k (1.19) (1.17) (1.18) (1.20)

5 0.872 0.973 0.973 0.966

10 0.701 0.883 0.884 0.872

20 0.351 0.589 0.594 0.578

30 0.120 0.294 0.304 0.291

40 0.024 0.109 0.118 0.112

50 6.4 x 10- 4  0.030 0.035 0.033

60 0 0.006 0.008 0.007

It can be seen above that the upper bound is reasonably tight, but that the lower

bound is not. It may also be observed that the approximation given by (1.20) is neither

an upper bound nor a lower bound. It underestimates the true probability for small values

of k, and overestimates for larger k.

Putting c equal to 7 and proceeding like before yields the following results.

k-1

P(3 7 )36 5 > k) (365-6k-j) (k=2.....52).

13k&-1

(1.22) P{r.a 63 > k} < e 3o (k - 2,..

I 13k
13~ &--I (I - ) (k = 2.. 39)

(1.23) P{r,,365 > k} >(35"k,-
0 (k =10.-.,52) 52)

and "

(1.24) P{r 7,305 > k} .e - t3ko.

In additison o son 1.7 provides the alternate lower bound

S- ( 1 % (k =2..30)(1.25) P{r, 36s 5  >30(32& - _)_
/

___

A comparison of these results is presented below*.
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simple improved exact upper

lower bound lower bound probability bound approx.

k (1.23) (1.25) (1.21) (1.22) (1.24)

3 0.606 0.794 0.896 0.899 0.852

5 0.320 0.552 0.689 0.700 0.641

10 0 0.093 0.171 0.201 0.168

20 0 1.2 x 10-5 2.3 x 10- 4  1.2 x 10- 2 8.1 x i0- 4

30 0 1.4 x 10-15 2.3 x 10-10 1.9 x 10- - 1.1 x 10-7

Observe that the upper bound again outperforms the lower bounds, and also that

the approximation formula behaves similar to the one in the previous example. It is

interesting to note that as poor as the simple lower bound of Proposition 1.6 (or equiv-

alently of the corollary following Lemma 1.1) appears to be, it is tight enough to help

establish the asymptotic formula for E[r] stated in Theorem 1.2, which follows. The

looseness of the lower bound arises from the fact that the linear factor [I - k

severely overcompensates for the tail probabilities decaying faster than thp exponential

factor exp (k22c-

Lower bounds for the exact probabilities in the two examples above may also be

produced from the corollary following Lemma 1.2. The values obtained (which are not

reported here) are at least as good as those given by (1.19) and (1.23) for all values of k:

however, while the values gotten from the corollary are better than those given by (1.25)

for some values of k, they are worse for other values of k.

Now a result for the mean will be derived using previous results for the distribution

of r.

Theorem 1.2. For a packing sequence consisting of equivalent points, if

P{r > k) _ c-

'p
'p
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for k > 2. then *.E ,.. as p 0., ,

Proof. By Theorem 1.1

(1.26) U M > 1. ',1"

Recalling from the proof of Theorem 1.1 that
OC

E[r] = 2 + 1 P{r > k}.
k=2 1

it follows that if P{r > k} < expL-(k-P then

lrn ELV' < lim (2 4-Z E": - / 2r)

Lk= I

< lim-= 1.=lim 1L- C- ,

p-O2

This result and (1.26) together imply

lira 1~=

P-O V 2p

as required to complete the proof. m
Corollary. E[r,.,]" as n - x.

Another method may also be used to obtain an asymptotic result concerning E[.,I2.

Asymptotic results for the mean are also found in [6] and [31].

Let the sequence of random variables {T,}. 2 be defined b-

,r , =7n (n =2,3.).
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It follows from Proposition 1.5. Proposition 1.6 and calculus that for any o > 0

im P{r" > a} =

where I = 2" Hence r, converges in jaw to a random variable having Maxwei' e

distribution. Since

~Lr1 sp,, r~dP

<lira sup aexp 2 + 3- 2) + -5 d,)O-O n Vs: n
lim aexp a 2 + + 0 e-d'

=0.

the random variabie' - are also uniformly integrable. Thus it now follows i see '3' that

E'r'l converges to the mean of Maxwell's distribution. i.e.

E[n-1 - j z 2 dz= , 2(2c- 1 '-"

1.4. Random Arcs On a Circle
p

In the setting of the previous section. if c is taken to be very large arid n considrably

larger. then the packing sequence of placing arcs of length c uniformly on a circle of length

n so that their endpoints have integer coordinates is very nearly the same as placing arcs

of length on a circle of unit circumference with their midpoints chosen according to a

uniform (0. 1] distribution. So in a sense, collision problems for random arcs on a circle

are just continuous versions of birthday problems, with one of the more basic problems

being to determine the probability that a set of k random arcs will be pairwise disjoint. ".

In terms of the notation of Section 1, the packing sequence for arcs of length a ohi a

circle corresponds to putting S = (0, 1].

=I
J( X. y = ,,,

1 - y! otherwise. .%

and = a. The packing sequence has equivalent points.

.~ ~ - . - .. - ..-%

555 ~. 5* j 5. 5.*'p*5555~ *-~V'.~"~~%
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The distribution of the time to the initial collision. r,. may be obtained from the

work of Stevens [57;. It is found that for 0 < a < 1 and k an integer.

I i fk <1

P{r > k}= (1-ka)k-
I if 1 < k < [a-

0 if k" > (a-'].

The essential step in Stevens' proof is the establishment of a one to one correspon-

dence between configurations of k arcs having no overlaps with configurations of arcs for

which none of tre endpoints C 2 . C 3 . •,Ck lie in a specified region of length ka. Since the

probabilit. that k - I random points fall outside of a region of length ka is just

(1 -ka)' - .

the above formula follows.

In contrast to the unwieldy product formula of the previous section. the expression

(1 - ka )i - ' can be easily computed with a hand held calculator even if k is very large.

Nevertheless, for the purpose of establishing asymptotic results it is convenient to derive

upper and lower bounds for P{r, > k}.

It should also be mentioned that the asymptotics of Stevens* formula have been

thoroughly studied because of its connections with time series. Ozie such interesting

connection is du, to the following fact:

P{r 0 > k} = > Gl -

where XI..Xk are i.i.d. exponential random variables and Sk = = A,.

Proposition 1.11. For a E (0. ) and k an integer satisfying 2 < k < a- ,

(1.27) P{re > k} <

1.2 S PJ-r, > k) > ,-o

!

-S.



LI.

32 Chapter I The Time to the Initial Collision of a Packing Sequence

and. with the additional stipulation that a < 81

2Pir, > k' > E-ak(k-1)(1 - a2 13 k) if k < a- 1 3

(1.29)
10 otherwise.

Further, the lower bound (1.28) is greater than the lower bound (1.29).

Proof. The double inequality

e- 1 ((1-l-); < C-< (l-) X)( (O <r< I)

may be used to establish 1.27) and (1.2S) as follows:
'It.

P{r. > k} (1 ka)k-

= [(1 - ka) ]ka(k
- l )

< 
- k (k - l )

<e

and

P{' > k} = ka)

k, k-1)

To prove (1.29) it is enough to show that for all appropriate k and a.

log -- r [C -ak(k-1)( 1 - a2 1 3 k)- 1 > 0.

Using (1.3) it follows that the left side above exceeds

(k - 1)(ka,'a " + a2/ 3k + Ila4/3k2 + 1a!2k3 +_18/3-k4

( -ka) 2 3 4
3ak a + a2/3 k + Ia4/3k2 + Ia 2k3 + 1_aS/3k,4

1 - al
/3  2 3 4

2/ a14/3 €2 _ _ 3 + la8/3k4.

a2 k + 2 k 3  4 "
2 3 4

It now suffices to have

la2/ 3k - -a4/3k 2 + 1a2k3 > -1
2 3 4

for all k such that 2 < k < o - /3. It is not hard to show that all points on the curve

= 3 X 2Z + 1 X
4 3 2

A

]4.,
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for which x E (0. 1.) lie above the line y -1. which is sufficient to complete the proof of

(1.29). Note that the claim following(1.29) has been proven as well. I

The proof of the following proposition is omitted since the results are easily estab-

lished using (1.2) and (1.29). Also (i) is just a special case of Proposition 1.3.

Proposition 1.12. (iD For any integer t > 0,

>ay' - as a 1 0.

(ii) For any 0 E '0.2/3).

P{-,c > [J}-as a 1 0.

It is interesting to note that whether (1.29) or the more accurate lower bound (1.2S)

is used to prove (ii) above. the requirement that o be less than 2 is necessary. An3

examination of the following expansion is helpful in understanding why this is so. For

k <a-

(-ka)k1  exp{ (k - 1) log( 1 - ka)}

=exp {(k - 1) {ka -(a 2  L + .j
.d -(k-l)k exp{ k l) (kao _( -1 (ka) 3

23

It then follows that

Pf,>[-] - exp 2 J as a 10

for all a < . From this last expression it can be seen that the statement in part (ii) of4.

Proposition 1.12 is true for any 0 < a < 1. Furthermore. it is apparent from the expansion

above that the statement is not true for any a > a*

With k,,(a) defined to be the nearest integer to a-', i.e. k,,(a) = [a-' + 11, Table

A compares Pf7r0 > k0,(a)} and exp(-akO(a)) for various choices of a and a. The ratio

exp(-ak(a)/P{-, > k,,(a)) is denoted by. r 0,(a).

.4.,

Po. . . . .
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Table A

a k.(a) (1 - ako(a))ko(a)- l e-ak2(a) r.(a)

10 - 1 10 0.387 0.368 0.950

10-3  32 0.365 0.359 0.984

-= 10-4 100 0.370 0.368 0.995

10- 1 316 0.369 0.368 0.998 C

10
-

6 1000 0.368 0.368 0.999

10-2 16 7.31 x 10- 2 7.73 x 10 - 2  1.06

10
- 3  63 1.77 x 10 - 2 1.89 x i0 -  1.07

a 3 10-4 251 1.74 x 10 - 3  1.84 x 10 - 3  1OG

10- 5  1000 4.36 x 10 - 5 4.54 x 10- ' 1.04

10- 6 3981 1.27 x 10-7 1.31 x 10 - - 1.03

10 - 2 18 3.43 x 10 - 2  3.92 x 10-2 1.14

10 - 3  75 3.12 x 10 - 3  3.61 x 10 - 3  1.16

a 1 0 - 4  316 4.05 x 10 - " 4.61 x 10 - ' 1.14

10- 1 1334 1.68 x 10 - 8 1.87 x 10 - 8  1.11

10- 7  23714 3.54 x 10 - ' s  3.78 x 10-2" 1.07

10 - 2 22 5.42 x 10- 3  7.91 x 10- 3  1.46

S2 10- 3  100 2.95 10-5 4.54 x 10 - ' 1.54
-3

10 - 4  464 2.80 x 10 -10 4.46 x 10 -10 1.60

I0- r  46416 1.65 x 10- 9  2.71 x 10- 1.64

10 - 2 25 1.00 x 10- 3  1.93 x 10 - 3  1.92

C =_I 10-3 126 4.89 x 10 - " 1.27 x 10 - 7 2.61

10- 4  631 1.47 x 10 - '8 5.11 x 10-'8 3.48

a - 10-2 32 6.42 x 10 - 6 3.57 x 10- ' 5.56

10- 3  178 8.56 x 10- '6 1.74 x 10 - 14 20.3

54
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The results shown in the table suggest that the approximation formula

P{r > k} ;ze - '

works rather well for k < a -0 6, and also performs reasonably for the case of a = 0.62.5.

The approximation seems somewhat disastrous for a > 2; however, the case of a = j is
- 3'

not nearly as severe as the cases for which a > 2. Similar results for cases with a = 0.65

and a = 0.66 have the ratio ro(a) tending slowly to 1 as expected. Thus the requirement

that a be less than 2 in part (ii) of Proposition 1.12 doesn't seem to be needed only

because a sufficiently tight lower bound is not known for P{,r > k}, rather its necessity

seems to reflect the apparent fact that the deviation from exponentiality in the tail of the

distribution of 7a tends to become more pronounced for values around a-2/3 or greater.

The following proposition follows immediately from (1.27) and Theorem 1.2 since for

random arcs of length a on a circle of circumference 1. p = 2a.

Proposition 1.13. E[-r . / as a 1 0.

The results of this section may also be applied to the problem of spacings on the unit

circle or, if end effects are ignored. on the unit interval. Suppose that C 1, C 2.- - - . Ck are

selected at random from (0.1]. Form the order statistics

C(I) <: C(2) < .. C(k).-

and define the spacings S1,S 2,. .S . S by

SC(I) - C() + 1 forj= I
-C() CO-I) for j =2.-. k.

Let

Mlk = min{S, S2 ... Sk}

Then

P{M > a) P{ro > k}.

As an example, it may be concluded from the results in Table A that the approximation

P{M, a) ' k2

-. V %~ '.+ i+jU U.i -i ii ,i + ' '
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should be fairly good whenever a is less than min{k - s /3. 10-2).

Hoist (22] obtains several nice results concerning the random variable ilk. He also

examines the length of the jth smallest spacing, a quantity which is related to the prob-

ability of j collisions occurring. In [23], Holst studied the asymptotic behavior of the

distribution of the largest spacing. which is directly related to the probability that a circle

is completely covered by random arcs of equal length. A review of other results concerning

spacings is contained in [46].

1.5. Arcs of Unequal Length

This section deals with sequences of random arcs having fixed, but not necessarily

equal, lengths. The arcs have clockwise endpoints C 1 , C 2 ,.-. which are independently

selected from a circle of unit circumference according to a uniform distribution. The first

arc has fixed length a,. the second arc has length a 2 , and so on.

In this setting. two arcs will collide whenever any portion of them overlap. Note that

the dual interpretation of saying that a collision occurs whenever two selections from the

space are separated by a distance less than some fixed 6 > 0 is no longer applicable.

Letting r denote the time to the first overlap, it is easy to see that for a, 4 a2 < 1

P{-r > 2) = 1 - a2 - a2 .

A simple inclusion-exclusion argument yields that if a, + a2 + a 3 _ 1 then

P{r > 3) = (1-a, -a 2 - a 3 )2 .

Likewise, for a, + a 2 + a 3 + a 4 < 1

P{r > 4} = (1 - a, - a2 - a 3 - a4 )3 .

The calculation of this last I sult, or any subsequent result, by brute force is extremely

tedious, however, a slight modification of a clever argument due to Stevens [57] establishes

that

(1.30) P{r > k} = [(I -Sk)+]
k-
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for k > 2. where sk a, + - + ak. (1.30) may also be obtained by appeain~g to a result

due to Marsaglia [39, and de Finetti [8]. Their result states that if (XI. X2 .. X,) is a

random point on the simplex {X E fl' : X > 0, xi + - - + X, = 1), then

B P{X 1  a, .X,. > a,} [1 a, a,,)+",

(1.30) follows immediately since it can be shown that the joint distribution of the set of

spacings which occur between n points independently and uniformly selected from a circle

of unit circumference is uniform on the simplex given above (see p. 76 of Feller [151).

An interesting consequence of (1.30) is that P{r = k) depends only on ak and sk- 1

4and not on the individual values of a,. *ak-1. This may be seen through the equation

Pf 7 = k} =P~r > k - 1} - Pf7 > k)

S1-Sk-l)k-1 -( sk-.1 - ak )-I

r can be made to have numerous interesting distributions by choosing al. a 2.

in certain ways. In the examples given below, several cases are examined .n which the

sequence of arc lengths is either monotonically increasing or decreasing. In the first case

presented. the prescribed sequence of lengths has the timie of the first collision being

equally likely over a range of values.

Uniformi Collision Timie

If al a2,..a, are such that

al + a12 =(M - 1

* ~~~ak = [1 _ (A )~ -[ (± )~
for k=3,4,.. .,m -1. and

then

and

E[71 M + L.
2

IL 

0 _
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Geometrically Decreasing Arcs

Now consider the sequence of arc lengths given by

ak = - ka

where - E(0.1)and0<a< 1. Fork>2,

Ska

so that

Plr > k} 1 - (1 k-1a (k = 2,3,.

Some asymptotic results for this setting are given in the following theorem.

Theorem 1.3. If ak = k-la where e (0, 1) and 0 < a < 1. then

(i) P{r < k}..(k- 1)if-- )a as il0

and

(ii)E as a 0.

Proof. The following two bounds can clearly establish (i).

P{- < k) = 1 - 1 - 'Y ) a]-ZV

<(k-l) (i_ k) a.

andfora<4[(k-1)(3)]-1

Pf r <k)}= 1-exp{(k -1) log I aI I - 1, o}-
> 1 - exp -(k - 1) \1 -Y

> (k- 1) -k a - - [(k - 1) (aI-k j 2.

r F 5'% .5. .~S .~ .... %. .
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No (i ii! will be established

Elf ] = P(, > k)

k,=O

Oc2 I _ ( I k
k=2 I- /,

k-ft

+ Au

and so '.41

(1.31) lim inf(f > 1. ,

x -*

Also. for any m > 3 and a sufficientlY small. .

7 < 2 [ - 1 -aI- I

k~

1-,, \ - ..

< ] 2 rn 2 j T -  a] -
=m-,- k m=- -

)a

so that
E[,] .

limnsupn <I.

Q--O (--a-- ) - l '
a-O+

Since the above inequality holds for all m > 3, it must be true that

lir Sul) < 1.

This result and (1.31) together imply that

E[r] a as a 0 + .

Displayed below are a few exact values of E[] along with their corresponding asymp-

totic appro imations for the case of I im Note that the lower bound 1 t provides
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an estimate of E' which is even more precise than the asN mptotic form gix en by tic

theorem above.

a Err]

L6%0.1 6.1401 5
001 51.019 50

0.002 251.00 250

00, Uniformnly Increasing Arcs

Ap Now instead of a decreasing sequence of arc lengths, consider the case where the

a! lengths increase according to

ak= ka.

Then

%J a (2 < k < Mf(a)j

(ka >=~)

Asy mptotic results concerning r are provided by the following theorem.

Theorem 1.4. If ak =ka. then

(i) P ()1, > t- f as a 10

and

(ii) Ejr] 1/3 (~ r () as a 10.

Proof. For k < M(a)

logPj r> k (-k - 1)log1 _ k(k+ 1) a

2

2

%
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SO that
'- [ ~~(k - 1 I  2 k< M a .

P{r > k} < exp 2 aj (2< k < M a)).

Then for a sufficiently small

{( /rJ}~1 t -

< exp 1 4

< i r s p ( ( 2 1/3 t .that~ ~~ a 2 { .6~ ~

>exp {(k-1) [k(k- 1 2 k(ka)' t

22

> s & ~ (k-i(k(k + 1)a)2

s o1 -hat

It follows that if a is sufficiently small then

p( ex a )1/3 > 4)13

Therefore lim inup 2 /<-> 1.

a-O+ e-

wlic whe cobi< mith a peiurlthestbihsn

PjS >. k) ex (kp. -p *) log 1 p k~ + 1)
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The boundis fouiid above yield thal

EY,'=2 + Pjr > k

1/ 
( 4)-a 3

2 e1 7 d>zk

=2

k=

E[> 1, f -

(2) r(4) 2
a 3 3

These upper and lower bounds for Er- can be used to easily establish (ii0.

The accuracy of the approximation

is demonstrated below for various values of a.
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#%ra F'r" ( ll/3F ,,,

3.197 2.77515 ,'

4.672 4.279
1 8.102 7.736

325

1,9 X 10 - 4i 19.65 19.30

4 9* x 10 -  30.93 30.59

7.98 x 10 - 6  56.63 56.29

2.00 x 10 - " 89.66 89.33

5.00 X 10 - 7 142.1 141.8

2.22 x 10 -  186.1 185.8
S

Quadratic Growth

If the ar( lengths are given b%

o ka -A

then

P{r > k} = Q - Okk+ 1 2k+ )

for 2 < k. For a not too large. the following bounds are true:

Pir > k) < exp (-3 k

and

P{r > k} > exp -3 (k )4 - -(k 1)7

These bounds can be used to prove the following theorem (whose proof is omitted) by a

method which is entirely similar to that which is used in the proof of Theorem 1.4. %

Theorem 1.5. If a= k 2a, then

(i)P > .t e as a

and

(ii) Er]-(71 1 -~ as a j'0-

1

a
pf*%* r " - ,t" h 

4
mg' * %*P" * d . . ~ . .. . .-u
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DisplaYed below are a few exact values of E,-* along with their corrt-poidilllg a),-

proximationb

,a El,.]

3 48 x 10- 4  9.003 S.731

2.96 x 10-6 29.03 28.77

3.00 x I0-9  161.5 161.2

Exponentially Growing Arcs

As a final example. consider the sequence of arc lengths given by

a k=-a > 1),

so that sk increases geometrically. Then. for k > 2

PJ-> k}= (k) Y )kk

Neither a tight upper bound nor a tight lower bound is readily established for E,-,:

however. it is found that EJr 1 can be closely approximated by a quadratic polynomial in

logo whose coefficients depend on ,. For instance, if I = 2 then

E[r] = f2(a) = (8.811 × 10 4 )(loga)2 - 1.335loga - 3.10.

and if -t = 3/2. then

E[r] - 13/2(a) = (5.065 x 10- 3 )(loga) 2 - 2.107loga - 6.36.

The closeness of these approximations can be seen in the results given below. In each case

the fit was done using more than twenty points, and the comparisons presented below are

just representative samples given to show the accuracy of the approximation
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a E - "
.. (a

9.7 x I0-4 7.14 6.20

9.54 x 10 - 7 15.79 15.58

9.31 x 10-10 25.08 25.05

909 X I0 - 13  34.60 34.60

S. X 10 - 16 44.23 44.23

,,

a E' f 3 / 2 (a

2 ( l0 - 6 21.64 21.57

3.43 x 10-7 26.15 26.13 I

4.72 x 10 - ' 30.73 30.73

5.95 x 10
- 9  35.37 35.37

7.84 x 10 - '0 40.05 40.05

1.6. Arcs of Variable Length .0

This section consider another generalization of the packing sequence described ill

Section 4. Here each selection from the space S = (0, 1] will be taken to be the clockwi...

endpoint of an arc having variable length on a circle of unit circumference. The length of

each arc placed will be an independent observation from a distribution F. and a collisio,-

will occur whenever any pair of arcs are not disjoint. The related covering problem. wher.
I

random arcs of variable length are placed on a circle until its circumference is completely

covered has been studied by several investigators (see '24] and [51] for example); however.

the collision problem discussed here does not seem to have received much attention.

Let the sequence of arcs be labeled A,,A 2 .-. , and let arc A, have clockwise end-

point C, and length L,. Thus C1,C 2..-. are i.i.d. random variables with a uniform (0, 1*

distribution and L1 .L 2 ,.- are i.i.d. random variables having c.d.f. F. Furthermore. tHi

L,'s are independent of the C,'s.

I
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00

Now let

5k = Li +-..Lk a-,-,

and let Fk denote the distribution of Sk. Let mF denote the mean of a random variabke

having distribution F, and as was the case in the previous section let r give the time of

the first overlapping of arcs.

The following theorem provides a lower bound for P{r > k} in the setting described

above.

Theorem 1.6. For a sequence of random arcs having lengths L 1. L2..- ., F.

Pir > k} > [(1 -kMF)
'

for anv choice of F.

Proof. It follows from (1.30) that for k > 2

*(1.321 P{ - > k} Pi > k : k r~dFkkx)

SJ- k- IdFk

Then using Jensen's inequality, it follows from ( 1.32) that

P{,- > k) > [(1 - E[Sk)+]k.
(1.33)

[1- kM F )+1' '

Note that a consequence of (1.33) is that E[r] for a packing sequence of arcs havin"

variable length prescribed by F is greater than or equal to E[r for a packing sequence of

arcs all having length mF.

Unfortunately, (1.32) is not necessarily easy to evaluate exactly, since for many

choices of F the distribution Fk is troublesome to obtain. However, notice that if F ( ) = 1

then
P{r > 2} =E[i - S2'

1 - 2E[L,].

-e-W e e
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and if F I~ then
3a

PIT- > 31 = E[(1 - S3 )']

= [I - 3E(LI)] 2 + 3 Var(L1 )

Similarly, if L, is less than 1with probability 1, then

Pf-r > 41 = [I1- 4E(L1 )] 3 + 12 \'ar(L1 )[I - 4E(L1 )j - 4E~LL - E(LI),3.

Note that if the distribution F is symmetric about its mean, then the last expression

I.

simplifies to %

Pj-. > 41 = [1 - 4E(L1 ) 3  12 N'ar(Ll)rl - 4E(L1 )].

For larer values of k, Pr > k) can also be expressed in terms of moments of LI: howeve

e"D

the difficulty of doing so increases with k.

Somne Examrples

If F is the uniform distribution over (a. bl the expressions above yield that 0

Pit > 2) = 1 - (b+ a),

3 lbb +- 2 ba) 2

=i > 3 2(bL+1)]' + 4 a(1)

and

P r > 4 ) = [ - 2(b +)]3 + a +(b - a)'[1 - 2(b + a)',.

provided that b < For the class of uniform distributions having mean mn < the above

probabilities are maximized by choosing (a,b] = (0,2m].

If F is the uniform distribution over (O.b), then Pfr > k) may be obtained directly

from (1.32) for any values of k and b. Feller r,15] has shown in this ca-se that for all s.

P Sr (- ) [(s -1-(b,])k,. '

)=O

and
k > -

k- -1

A bs) k - ( 1) (3) [(, spt mb - I)'
If Fis he nifom dstrbutin oer 0,b, thn Pr >k} my b obaine diecty .

fromXS~ (132 fo any' vauso k and b Felr[5 a hw in this cas thtfr l. " p'
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where fk is the density for the distribution Fk. The above formula for Fk(s) ws originally

a; obtained by Laplace [33'.

It should be noted however, that the evaluation of

J[( - s)+]k-lfk.(s)ds

becomes quite tedious for larger values of k. Alternatively. for k < ' one may use

Pr > k} =b - k .. (1 - 1- X, Xk)k-ldxldx... dXk.
Pdu

As another example. suppose the arc lengths are distributed such that

L, = {a w.p. q

b w.p. 1-q

vkherp a < b. Then for k > 2,

1.3-4 P > k} ('I - (k- j)bl12 k\ kqJ(1 - q )k-j

2=0

' 0Now sore, comparisons will be made between various values of P{r > k} and E'-'

arising from different distributions all having the same mean. Consider eleven distribu-

tions. G,. ,Gz 1 , each having mean & Let G, be the trivial distribution which assigns

probability 1 to the outcome J, Let G2 be the uniform distribution on (o. and

let G 3 be the uniform distribution over (0, -]. Let G4 assign equal probability to each of509

the values - and -L, and let G5 give equal probability to the outcomes 1 and 19

Let G6 be such that if L - G6 then P {L = -L} = 2/3 and P {L = 0 1/3 and let

G7 be such that if L - G7 then P{L } = and P{L = -L} = 2. Each ofthes.

first seven distributions has a variance that is no greater than 8.1 x 10 - .

The variances of the next four distributions increase from a value of 4.725 X 10-4 for

G8 to a value of 2.34 x 10 - 3 for Gil. Gs is such that if L - Gs then P {L = - -

and P{L= j} =IL and G 9 is such that if L -- G9 then P{L 1} = Z3° and

P{ = 19 Let Go be such that ifL G)- o then P{=-} and8 2494000 4 9i
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Finally, let G11 be such that if L - G11 then P {L = ' } = and

.P L = 1} = 13

Let r, denote the time of the first collision for the packing sequence of random arcs

having lengths distributed according to G. Then for j = 1,.. .,11, P{r, > 2} = 0.98.

I. The following table gives the exact values of P{7, > 3} and P{r; > 4} for j = 1,-.., 11.

as well as estimates of the Ej-,] based on 100.000 computer simulation trials for each

distribution. (E[r1 ] is exact.)

j Plr, > 3} Plr, > 4} E[-r]

1 0.940900 0.88474 9.622

2 0.940925 0.88483 9.636

3 0.941000 0.88512 9.687

4 0.940975 0.88502 9.694

5 0.941143 0.88567 9.823

6 0.940967 0.88499 9.685
7 0.940967 0.88499 9.680

8 0.942318 0.89010 11.05

9 0.944178 0.89686 13.82

10 0.944264 0.89718 14.23

11 0,947920 0.90954 21.60
..

It may be seen that the values of E[r,] for the six nonconstant distributions having

small variances are not too much greater than E[ri]. For the four distributions with large

variances, the values of E[, I increase as the variances increase, and they are considerably

- larger than E[rT]. Also. it is apparent that Er] is not asymptotically proportional to

(P{A 1 A A2})- 11', as was the case when all of the arcs had the same length.

When comparing arc length distributions having the same expectation. it is con ec-

tured that E[r] increases as the variance does. So with a large variance the arcs tend to

avoid each other and thus cover the circle at a faster rate than arrs of smaller variance["

.-
°.
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do. This.is consonant with the conjecture examined by Siegel [491 and Huffer [24] dealillg

with the coverage of the circle by random arcs. They conjecture that when comparing

arc length distributions having the same expectation, that if one concentrates more mass

near the expectation, then the corresponding coverage probability will be smaller. In

other words, they claim that a smaller variance gives a slower rate of coverage. But this

suggests that the arcs may tend to overlap each other more frequently, which would mean

that their conjecture is somewhat consistent with the observation that E[r] decreases as

the variance does.

An Unusual Case

An interesting case of a two outcome distribution is where one of the outcomes equals

zero, and the other outcome is such that E[L,] = m. That is, suppose

0 w.p. q
(1.35) L, =

y-w-p. 1 - q,

where 0 < m < 1 - q. A collision occurs whenever any two arcs of positive length overlap.

or whenever a point arc of zero length is covered by an arc of positive length. An easy

argument establishes that (1.34) remains true even for this degenerate case. The following

theorem is a statement of this fact.

Theorem 1.7. Suppose arc lengths L 1 ,L 2 ,. -are distributed according to (1.35).

Then
kk-

P{r > k} = ([1- (k -j) I -- ] +) (k) q-( 1 _ q)k-1.

Proof. Let Hk,j be the event that exactly j of the first k arcs have length zero. Then

k

(1.36) P{r > k}= P{r > k Hk,j} )q(1-q)k-.

Now

k 3 k

(137 Pfr>kHkO
* M

, -7



L-I

Section 1 6 Arcs of Variable Leng:h 51

and

(1.38) P{r > k I/k~k} = 1.

For 0 < j < k, Pr > k I Hk,)} is just the probability that (k - j) random arcs of length

are disjoint and that j random points avoid the portion of the circle covered by the

positive length arcs. Upon conditioning, it may be seen that

P{r > k I = ([1- - l ([k -(k- )l) J] k--

-~~~~ ([ q~~2. k

Noticing that this formula also holds for the cases given by (1.37) and (1.38). it follows

from (1.36) that

P{r > k} = E 1 -(k-j) m- qJ ( 1  q)k-

=0 
+

(which is the same as (1.34) for this case). I

Now suppose that q = (1 - m). so that

(1.39) LI w.p. m

Clearly, for k > 2
Pfr > k) PfHk~k}

= (1- m)k.
Hence

-'E[r] =2+_ Z(1 -m)k

1

m

Putting m = 0.01 yields

E[r] = 100.01,

which is larger than the value of E[r] for each of the previously considered distributiotis

having E[L,! = 0.01.

.U,*da[ 1-U," V.. d - -
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Another Interpretation

Now suppose that a collision is considered to have occurred only if there exists an

overlap of positive length. Then, unlike the previous interpretation, the arcs of length

zero cannot participate in a collision.

The distribution of r is easy to determine in this case. If the arc lengths are dis-

tributed according to (1.35). then for k > 2

k-2

k-2

I: Q1 - (k ('( -)1T + -- q)-.

If the lengths are given by (1.39). then for k > 2

P{r > k} = P{Hk.k u H& ,.,-1}

=( -m) k + k(l - M)k-Im.

It follows that in this case
case

E[r] = 2 + - m)k + k(1 - m)k-m]
k=2

2

Some Bounds

As mentioned previously, the evaluation of the formulas for P{- > k} becomes

difficult unless k is rather small. It is therefore convenient to establish upper and lower

bounds for these probabilities. S

For any choice of F, (1.33) provides a lower bound for P{r > k}. It then follows2/3!
from the proof of Proposition 1.11 that for k < n-

P{r > k} > - mF k(k-)( 1 - m 3 k),

provided that mE _ 1 ,

An upper bound for P{r > k} is given by the following theorem. '5

N
'.;..:-.'." .:,% .:,.::" -. _,-,-,-:.-.=, .- -. ,_, ,:-..... .-.. ,...-, . . , -.. ,-. _. . ... : 5
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Theorem 1.8. For a sequence of random arcs having lengths Li. L 2,". .d F, VA

k
(1.40) P{r > k} < e-(k-1)zdF(.)

for any choice of F.

Proof. If 0 < Sk < 1 then

(1- Sk)+ = (1- sk) L
(1.41 )

<_ -.

This inequality is also true for Sk >_ 1 since e- s, is always positive. It then folloks from

(1.41) and the independence of the L, that

P{r > k} = E{[(1 -

< E{-'klls}

=Elf-(k-1)(Ll+--*LA)

=(Je-(t-udF(z))k
'

kI

More Examples

The upper bound (1.40) is generally much easier to evaluate than (1.32). For irjanc,.

if

P{L, = a} = P{L, = b} =

then the upper bound (1.40) becomes

(14 )+ L,-(k-I)b

(1.42) = cosh ((k -1) ( )(.22M

If F is the uniform distribution on (a,b], then

P{r > k) - e- -d k

(1.43)

(k - 1)(b -a)

It may be shown that this upper bound is bounded from above by (1.42).

•'I
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To consider a specific example. suppose that

P L. = --I = P: L,=-.

Then the lower bound given by (1.33) is

Pir > k} >_ - +

so that

E[r] = 2 + P{r > k)
k=2

=2+ 10-

= 9.622.
Recalling for this distribution (G 4 from before), that the estimate of E:7; obtained from

100.000 simulation trials was 9.694, it is observed that the lower bound is reasonably close.

For this case. the upper bound given by (1.42) becomes

exp [-" '] J " 
" exp 3- 1 ko

P{r > k} ( 200Jr 0

-- 2

Since P{r > k} =0 for k > 199.

19k

E[7- < 2 + (e 2
k=2

= 9.945.

This upper bound for E[r] is not as close as the corresponding lower bound; however, it

only overestimates by about 2.6%.

An examination of the case where F is the uniform distribution over [ , ] again

finds that the bounds produce good estimates. The upper bound (1.43) yields

1 9 exp 1- 2001 -exP - 2[ 0 1

E[,,< 2 + (k - 1)-00
k=2

= 9.904.

a value that overestimates the observed value. 9.636, by about 2.897

j j
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The lower bound in this case has the same value as did the lower bound in the

previous case. 9.622. This occurs because the lower bound provided by (1.33) depend.,

only on the distribution through its mean, which is the same for both cases. It will be

seen in the next case considered that the lower bound sometimes performs very poorly.

If the arc lengths are distributed according to (1.39) then

Pjr > k) < [(1 - m) + me(-iij,

S0so that

E[r <2 - m) m)+ -(-)].

k= 2

Putting m 0.01 yields

E,'] 7 100.025

which is not too much greater than the exact result.

E[r] = 100.01.

Notice however that the corresponding lower bound, which is again equal to 9.622. is

extretikely poor for this choice of F.

Another Approach

An alternative upper bound for P{r > k) may be produced by the method used in

Section 2. For instance, suppose F is the uniform distribution on [a, b], and let p denote

"4' P{A, A A,} (r 0 s), Then

p= 1- P{r > 2 = b + a.

P{A, A A., A, A A,, is equal to p2 if r, s, t and u are all different. Ifs = u, this probability

is given by

(b -a) 3  P{A, A A., A, A A. = z, L, = y L. = z}dzdydz

b b 6

(b -a)3 fa . (z + z)(y + z)dxd:
13 b)2ab

S.12

-5-,

,4.

•-~ ,* * ~ . . &: * ~ \. J E
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which is less than lp

Now for k >3

P{r > k} = P [n {A, does not co~lide withA,
1<2<1<k '

k(k - 1) p 2 k(k - 1)(k- 2)(3k + )
2 24 +4).

The last expression above is less than or equal to the right side of (1.7) whenever

S(7k 2 - 17k + 3)P + (k - I)sp2 < 1.

12 24

Noting that the left side of ( 1.44) is less than

7(k - 1)2 (k - 1)" 2
-P + p,

12 24

it is clear that (144) is true for all k <1+ min {/(5)i / }

The key steps in the proof of part (i) of the following proposition have now beein

established. The remaining details of the proof are omitted. Parts (ii) and (iii) are proved

in the same way as the analogous propositions in Section 2.

Proposition 1.14. Suppose F is the uniform distribution on [a.b] where 0 < a < b <

(i) Let ,1 = min, ,a+-') 15 Then

- "- 
> k) < for 2 < k < M

e- 02 otherwise.

(ii) For fixed t > 0. 5

P Vj:+- > t -,2as (a +b) 0.

(iii) For 0 < a <

P{r > [(a + b) -, exp 1-2(a + b) '  as (a *b) 0

Ir 6-r**f~f/~rffpc~ %C% % .Uai r~ e Ir V
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Results similar to these may be obtained for the discrete circle of leri' !, di. %.

in Section 3. as well. for example. suppose F is the distribution n, asign. equat

probability to the first m positive integers, where m < ,. Then

P{L, = } = _ (,= 1, 2, - -'. 1, .,rn ,
ITn

where L, is the length of arc A,, as before. The clockwise endpoints C1 . C2. • - are selected

independently and uniformly from S {1,2...,n}.

N ow

p=P{AAA.

P{ A. A A,. .4, A .4, = p2  
a'

if r. s, t and u are all diffrent, arid for r. s. and t all different

13, 1 13 2 ,
PA. A .4,.., A .4,4 - - 21-' < 13p.

12 122 12

Noting the similarities between these probabilities and the analogous ones for the contin-
P

uous case, it follows that if ka - bi is replaced by p = -. , then the results stated in the lasi
proposition hold for the discrete case also. Similar results are attainable for choices of F 0.:

other than the uniform distribution, in both the discrete and continuous cases. However.

not every caoice of F can be successfully handled in this manner.

1.7. Packing Sequences in Two-Dimensional Spaces

In Section 4 the distribution of r was investigated for the packing sequence of placing

random arcs of length a on a circle of unit circumference. In this section. several two-

dimensional analogs of that packing sequence will be examined.

The first case to be considered will be that of placing random circular disks of area v

on a two-dimensional unit torus (see Miles [40] for a description of the k-dimensional unit

torus). Each disk has radius " so that two disks collide if and only if the euclidean

distance between their centers is less than 2V . Formally

S= (0, 1]x (0,11

.. -,, .. ",. ,, ,. ,,,%". ',. -,",,,",,.",- ", ,"..".",-, . -."S',", -"-." ,.-..." ."..-.%,'.,'. "-," , ', -',.',.,e,, -',g ,,2".', ,,,,,€ -" Y,€ ,#!."#.,,¢ ',,"IV
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and"
6 =2 

The points

C, = (C,1,C,2 ) (, = 1,2, .. )

are the centers of the disks, and they are selected randomly from S by letting th. C,, be

independent, uniform (0, 1] random variables. The distance between two points is given

by

' .(C,.C,' = ([t'(C.CJI) 12 + [P'(C,2.C.2)]2)1 / 2

where M," I[z- t1 ifIz-y1 <_ 2
1 1 -x - yj otherwise.

This packing sequence has equivalent points, and

p = 4r.

Unlike the case for arcs on a circle, the distribution of r is not known precisely in

this two-dimensional extension. Propositions 1.1 and 1.2 provide lower and upper bounds

for P{r > k}: however, the upper bound is not sufficiently tight over a large enough range

to yield an asymptotic expression for E[r] as p tends to zero. A plausible, but not exact.

argument will be used below to derive an approximation for E[r].

For each disk center C,, let the associated "target area" be given by

E= {(x,Y) E S Y((zp),C,) < 6.

Thus a disk with center C, will collide with the disk having center C, if and only if C, E E,.

or equivalently if and only if C, E E,. Also let

A, {(x.y) E S :((zy).C,)< /2}.

Then A, represents the actual disk of area v surrounding the point C,.

LS
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Now {r > k - 1} implies that

A, nA,=0 1 <i<j<k;

however, note that the collection of sets {E,)k4 need not be mutually disjoint. The event

{r < k - 1) impiies that A, ) .4, t o for some 1 < i < j < k. This means that for at least

one pair (i.j). the area of E, n E, is greater than the maximum allowable overlap of target %

areas when all of the A, are disjoint. Now it is heuristically assumed that conditioned on

{r < k - 11 having occurred, the area of u -1 E, is not on the average larger than it is for

when {r > k - 1). That is. it does not seem unreasonable to assume that

1.45 PC, A^C(k-- 1) r < k,.- 1})< P{Ck A^C~k- 1)! > k, - 1}.

which would imply that

P{Ck AC(k - 1)} P{Ck AC(k - 1)1t > k - 1}. P

or equivalently 

P{Ck vC(k - 1) r > k - 1) < P{Ck V Ck 1 }.

If the above is true. it then follows that 5.-

P{r > k) = P{Ck vC(k- l).r > k- 1) "5

= P{Ck V C(k - 1) 1r > k - l}P~r > k-i1)

< P{Ck v C(k - 1)}Plr > k - 1},

and induction yields

P{T > k} _ P{Ck vC(k - 1)}P{C-_ VCk_2} ... P{C2 vCI)P{'r > 1).

Since P{r > 1} =1 and S.

P{C, VC,,,} (1 - p)- "I (m 2.3..), ,-

• , .. . % ,¢,, ..,.-..-..- v - "5 7.' " "'" * T " " " * " " "" " '- "*" " "* .' " "; ... "" ". -
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it follows that

Pt > k} ((1-pjE.--'=i

< [oI - P)I/pl] P
< - (!-ip,

If this upper bound is indeed true, then the result below easily follows from Theorem 1.2.

Theorem 1.9. Assume (1.45). Then for the packing sequence of circular disks on

the torus

(1.46) - as p0.

or equivalently

El-]~ - F as v'0.

For another analog, consider the random placement of spherical caps having surface

area v on a sphere of unit surface area. Each cap has angular radius o = 2sin-,(/v),

and two caps collide whenever the great circle distance between their centers is less than

t = 2o. This packing sequence has equivalent points with p = 4v(1 - v). Similar to the

previous analog, it follows that for small p an approximation of E[r] is given by

Thus for v not too large. 1'
E[r] v(1- v)"

It is interesting to compare the above result with the analogous one for random disks

on the unit torus. For disks and spherical caps having the same area, the results imply

that the expected proportion of the total surface area covered immediately prior to the

initial collision is greater for the caps on the sphere than it is for the disks on the torus.

Since P{r > 2} = 1 - p for packing sequences having equivalent points, it also follows

that P{r > 2} is greater for spherical caps than for disks of the same area. Because it

is difficult to obtain closed form expressions for Pfr > k) for caps on the sphere when
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k > 3. it N&iII not be proven that P{ > k} is always greater for spherical capt- tl,a,

for correspordinig disks: however, simulation results (not reported here) indicate that tLis

may be the case.

A third two-dimensional analog to arcs on a circle is the placement of squares of area

t' on a two-dimensional torus such that the two sides of each square are aligned to be

parallel to a pair of perpendicular axes on the torus.
JL.

For this extension, the space S and the centers CIC 2 ,... are exactly the same as p

they were for the case of disks on the torus. However, now

U(C, , C,= max{u(C,l. C jI). u(C,2 , C;2 )}

where p' is the same as before. and

VITW-6=

This packing sequence has equivalent points, and it seems reasonable to suppose that.

for small p.

2pp

as it was for the case of disks on the torus. For squares of area v.

p = 4v,

so that

E [,r]

Thus the expected time to the first collision for random squares of area v on a unit torus %

appears to be approximately equal to the expected time to the first collision for random

disks of area v on a unit torus.

The following table displays, for both settings, some estimates of E[t] obtained by %'

computer simulation, as well as the corresponding values of the approximation formula

for Elir]. E[r.] denotes the observed average value of r for disks of area v. and E[7,,, ]

denotes the corresponding value for squares of area v.

". 

5
,q% 

.%-,' f" 
% 
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A Monte Carlo study of expected time to first collision on the torus

rd, is the collision time for random disks of area v

,r, is the collision time for random squares of area v

v # trials E[rd ] E[r.tJ V'g7

.L 60000 3.3255 3.3282 2.506616

__50000 3.9517 3.9570 3.1333", 25

-L 50000 4.5833 4.5862 3.759936

N__1 50000 5.8134 5.8334 5.0133
64

- 50000 6.4412 6.4551 5.6399

110000 7.0696 7.0753 6.2666100

6.4 x 10- 3  50000 8.6662 8.6608 7.8832

2.5 x 10- 3  50000 13.345 13.335 12.533

1.6 x 10- 3  50000 16.525 16.515 15.666

9.0 x 10 - 4  50000 21.697 21.713 20.889

6.25 x 10-  50000 25.947 25.822 25.066

4.0 x 10 - 4  10000 32.193 32.110 31.333

1.0 X 10 - 4  10000 63.440 62.725 62.666

2.5 x 10 - 5 10000 126.90 125.66 125.33

1.6 x 10 - ' 10000 158.63 157.80 156.66

9.0 x 10-6 10000 209.35 207.71 208.89

6.25 x 10-6 10000 251.95 252.90 250.96
'.

4.0 x 10 - 6 10000 313.93 312.45 313.33

1.0 x 10-6 5000 631.50 627.10 626.66

It may be seen above that for the larger values of v, E[r,,] is greater than E[r&.].

For the smaller values of v considered, the reverse is true except in two cases. For these

two cases, the apparent discrepancy may possibly be due to the smallness of the samples

and the variability of r.

-a
I

.1' . . . % . . . . .. .
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It is interesting to note that for all v < 1 the distribution of 7- is different for disks

and squares of the same area r. This my be established from the fact that

P7> 3) 1 - 12v + (32 + 12 vf3-V)

for disks of area r < -I, and

P{r > 3) = 1 - 12v + 39v2

for squares of area v < -1 . These probabilities were calculated explicitly.

N! Packing sequences may also be defined in spaces having dimension greater than two.

s For example, consider the three-dimensional extension of the last packing sequer-e de-

scribed. Such a packing sequence corresponds to placing at random cubes of volume v in

a three-dimensional unit torus. A collision occurs whenever two cubes overlap.

For v< 8'

P{ir > 2) = 1 - p 1 - St'.

A direct calculation yields that if v < -L then64

P{r > 3) = 1 - 24v + 165v2 .

The computation of P{7 > k} for k greater than 3 is not easily accomplished: however, it

is not unreasonable to expect that if v is sufficiently small then P{r > k} is a polynomial

in t, of degree k - 1 having

1 - k(k - 1)4v 1-(~

as its first terms.

An argument similar to the one given for the two-dimensional cases suggests that

E[r] should be closely approximated by

To be more precise, if (1.45) is true then it easily follows that E[r] F- .
"8

ia'

", *,, " "',,,", " . ", , -,, ", ",,, - ', ., V -,, ,U,.. -, ,,, -, . "' %,' ,e 
' '

". ' " - ", " , " *," " *"'" " Yd* "
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The table below contains estimates of E[r] obtained by computer simulation, along

with corresponding values obtained from the approximation formula above.

v # trials E[] V

6 10 4.372 3.545
64

512 10.891 10.027
512

100 14.829 14.012
1O00

8000 0 40.004 39.633
5120 3  311.652 317.066

512000

1 103 452.472 443.113

(X 1--6) 200 1229.625 1253.314

1.8. Random q-ary Codewords

Consider the metric space consisting of all q-ary n-tuples with Hamming distance as

the metric. That is, let

S = (sS2,"sn) :si E {0,. .,q-I} i n),

andforx= (X1,"',Xn) E Sand y= (yl,"',Y,)E Slet

p(xy) = -

E=0

where i =
= {1if w=0

0 0 ifw#0.

Thus the Hamming distance between two points is just the number of coordinates in which

they differ.

Note that there are q' points in the space. If two points collide whenever the Ham-

ming distance between them is less than d E {1,2,.. .}, then the probability that two

arbitrary points collide is just

p(q,n,d)= ( q - 1)

.n1=0

%"
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Note that for d equal to 1. the setting is the same as that of the basic birthday problem

when there are q' days in a year.

For the case of q equal to 2 and d > 1 fixed, a result of Kozlov [32] yields that as n

and k tend to infinity, if

then

VThis suggests that the approximation

P{r > k} e( :)p(2 'nd)

should not be too bad if n and k are not too small.

The results of Section 2 may also be applied in this setting, since the packing sequence

has equivalent points. Proposition 1.3 yields that

S(q d)) r >t f 
- t2 as n - oc,

for fixed q and d. Furthermore, an argument similar to the one preceding (1.45). combined

with the result of Theorem 1.1, suggests that the approximation

N-..

(1.47) E[r] 2p(q,n,d)

should do reasonably well provided that n is not too small.

As an example, consider the case where q = 2 and d = 3. Letting E[r], denote the

average value of r obtained from m random packing sequences performed by a computer

using a pseudo random number generator, the table below displays values of E[r], and

the approximation given by (1.47) for various values of n.

I

*4
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n m 2 p-2,',3)

9 1000 4.96 4.18

11 1000 7.73 6.93

13 1000 12.52 11.83

15 500 21.70 20.62

17 500 36.92 36.56

19 500 66.51 65.66

21 250 119.92 119.16

23 250 217.41 218.10

The following table shows some corresponding results for the case of q = 2 and d =5.

n M EN, ,, f[7,).s

15 500 6.08 5.15

16 '00 7.00 6.40

17 500 8.45 8.00

18 500 10.89 10.09

19 500 14.08 12.79

20 250 17.16 16.30

21 250 21.68 20.89

22 250 27.06 26.89

23 250 34.56 34.76

24 250 47.86 45.11

Now consider an alternative packing sequence on the space of ternary n-tuples having

a metric p given by

,(x, y) = mafx 1[ - yd., ' l<i<n

Two random points collide whenever the distance between them is less than 2. Thus two

points C, and C, do not collide if and only if for some m, C, = 0 and C,, = 2. or

. """- • " i- ° " i i " I i - i !. . .
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P

C, =2 and C,, =0.

This packing sequence may also be described as follows. Imagine a cube in n di-

mensions of sidelength 4, having a cubic lattice of unit sidelength superimposed within

it so that each vertex of the cube coincides with a lattice point. Smaller cubes, having

sidelength 2, are then sequentially placed at random within the larger cube so that each

vertex coincides with one of the lattice points. This may be accomplished by letting the

C,, (i = 1,2,. .,j = 1,.. .,n) be i.i.d. random variables having a uniform distribution on

the set {0, 1, 2}. Equivalently, each of the small cubes is put uniformly at random at one

of 3" possible locations within the big cube.

The centermost location within the large cube is labeled (1, 1,.., 1). The sides of a

small cube placed at this location do not touch any of the sides of the large cube. This is p

not true if a small cube is placed at any other location. N

A collision occurs whenever any two small cubes are not disjoint. Notice that a small a,

cube placed at (1..... 1) will collide with any other cube.

The probability that any two arbitrary points collide is

°,-
p (7)n.

This follows from the fact that

P{IC, - C,,,J < 2)

- P{,C," - C. I<2 1 C1, 1 }  + P{ICi, -C,, <21Cm E{0,2}}

7I

9 I.

The packing sequence does not have equivalent points since

P{CA, C j  l =.(1,...,1)}= 1#p.

Thus Theorem 1.1, which provides a lower bound for E[r] which is asymptotically equiv-

alent to - is not applicable. The argument in Section 7 which suggests that E[r] is

TIP

4.. a - -*~' ~ ~ r . %. f...
1%
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bounded from above by y is also not applicable.

€-.-.

In order to see whether or not V/ provides a good approximation for E[7] for

this packing sequence, random packings were generated by computer for various values of

n. The table below displays results obtained from these packing attempts, along with the

corresponding values of The notation is the same a before. Estimates of the standard

deviation of E[r],, are also given since r has great variability in this packing scheme.

Although it is not conclusive, the results indicate that, for small p. 7 approximates

E[r] reasonably well even in this unusual case.

n m (f)/2 Em s.d. ( E[-4-)

5 10000 2.35 3.37 0.01

10 10000 4.40 5.66 0.03

15 5000 8.25 9.80 0.07

20 2000 15.47 17.06 0.20

25 1000 29.00 32.00 0.53

30 1000 54.35 57.26 0.96

35 500 101.88 106.50 2.58

40 100 190.96 188.69 9.59

45 100 357.94 365.94 17.20

50 100 670.92 638.79 32.75

'.,

The table below compares the distribution of r for packing sequences of arcs and

simple cubes for which p is the same. The results for the arcs on the circle are exact, while

the simple cubic results are estimated from the simulation trials.
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Err '  s.d. (r)

p arcs cubes arcs cubes

6.56 x 10- 3  15.47 16.23 17.06 7.84 9.04

1.87 x 10- 3  29.00 29.75 32.00 14.91 16.67

5.32 x 10 4  54.35 55.11 57.26 28.17 30.40
I-

It may be seen above that underestimates E[r] in all cases, but does so more %

severely for the cubes than for the arcs. Also notice that the standard deviation of r is

greater for the cubes than it is for the arcs.

1.9. Summary

It has been shown that the approximation

holds in a wide variety of collision settings. For cases considered for which the distribution

of r is known exactly. the two sides of (1.48) are proven to be asymptotically equivalent.

For packing sequences of equivalent points, asymptotic equivalence is made plausible but

has not been proven. That (1.4S) can hold for a packing sequence not possessing equivalent

points was demonstrated by the simple cubic packing scheme. The formula (1.48) does

not hold for arcs of unequal or variable length on the circle: however, note that in these %

settings a collision is no longer defined by the simple relation

C, A C, A(C,,Cj) < 6

for some fixed .
-.

The approximation formula

(1.49) P{r > k} e- P

has also been investigated. For random arcs of constant length. (1.49) is reasonably

accurate whenever k < p- 2/ 3. This is suggested by Proposition 1.12 and demonstrated by

.V
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the results shown in Table A- The results of Table A also indicate that 1.491 canl be quite

inaccurate if k > p-"1 3 . It is reasonable to suppose that the cutoff poijt p o-'ccul i

other packing schemes as well

.

5'
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Chapter 2

Approximate Packing Densities of ,.,
Randomly Constructed Codes

p

2.1. Introduction

Consider the sequence of points C1 , C2,- . chosen independently and uniformly from

S. Each point in the sequence will be considered to be either packed or rejected. A point

will be rejected if and only if it collides with a previously packed point. Otherwise the

point will be packed. Thus C, will be packed, and C2 will be packed unless it collides

with C1 . Then. letting D, denote the union of all points from among C 1 , ... C, which

have been packed. C,+ will be packed unless it collides with some member of V,.
'p

The members of V, are said to constitute a saturated packing if each point in S

collides with at least one element of A. Thus, if V, is a saturated packing, none of

C,+ 1,C,+2 ... can be packed and , = P,+ 1 = A+2

Let T be defined as the first time i for which D, is a saturated packing. Call T. a

stopping time, the time to saturation for the packing sequence. Let M be the random

variable defined by

M = #DT.

Thus M counts the number of points in a saturated packing, and T is the total number

of selections from S, including rejections, needed to reach saturation.

For a metric space (S.p). suppose a suitably defined content v is associated with

each point. Then let the random packing density, denoted by p, be defined as

I v
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If S is finite, the content v may be taken to be (#S) - 1. For this choice of r, the packing

density will be referred to as a center density and will be denoted by r. Hence

. 1 ,,lM
r = 1-gE 1f.1

*# S

Random packing problems have been studied by numerous investigators; however.

attempts to obtain exact solutions have been met with very little success except for the

cases of packing on the discrete and continuous circles (or line segments). The one-

dimensional variations are often referred to as "parking problems" since the general idea

can be expressed by the question 'How many cars of length a can eventually be parked on

a street of length z if the parking is done at random?'. Put this way, it is also assumed

that parked cars are never moved and that cars will move on to other streets if they cannot

fit next to the curb at their randomly chosen locations.

Random packing problems in spaces of dimensions two and three are also of inter-

est, partially because they can be used to model physical phenomena such as molecular

adsorption and liquid and plasma structure. It is also of interest to compare the packing

densities obtained with the density from an analogous one-dimensional case. A conjecturp

of Palisti [44] suggests that a two-dimensional density should be equal to the associated

one-dimensional density squared; however, the conjecture has never been proven and nu-

merous simulation studies have indicated that it is not true. More will be said about this

conjecture in Section 2.5.

Solomon [53] reviews the major findings in the one-dimensional settings, and discusses

efforts to approximate densities in higher dimensions by simulation results. A more recent

survey article by Solomon and Weiner [55] updates this material.

The study of random packing densities in multidimensional spaces through computer

generated packings is, in general, difficult due to the extremely long running times required

to perform the random packings. However, if each coordinate of a random point must

assume one of only a small number of possible values, then the time required to achieve a

saturated packing need not be unreasonably long. Random packing sequences on the space

1%.Na
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of q-ary codewords provide convenient and interesting ways to study packing densities in

spaces of two or more dimensions. Various random coding schemes will be examined in

the next five sections.

2.2. Random Binary Codes

Consider the metric space introduced in Section 8 of Chapter 1. and let q equal 2.

Thus S is the space of all binary codewords of length n. There are 2"' such codewords,

and each one can be represented by a unique n-component vector with each component

being either 0 or 1.

The Hamming weight of a codeword u is defined to be the number of nonzero com-

ponents of u, and the Hamming distance between two codewords u and v is the Hamming

weight of u - v, where modulo-2 arithmetic is applied. Note that this definition of Ham-

ming distance is equivalent to the one given in Chapter 1.

Subsets of S containing two or more elements will be called codes. A code is called

an (n,d)-code if the codewords are of length n and the distance between each pair of

words is greater than or equal to d. The minimum distance d is an important parameter

in the description of a code since it is related to the error detecting and error correcting

capabilities of the code. It is possible to detect up to d - 1 errors, where an error is

said to occur when a bit is recorded incorrectly at the receiving end. Furthermore. up to

[(d - 1)/21 transmission errors can always be successfully corrected.

Usually codes are constructed by algebraic methods in order to "neatly arrange'

the codewords, and hopefully produce (n, d)-codes which have the maximum number of

words. A(nd) will denote the number of words in the largest possible (n,d)-code. Codes

constructed algebraically may also have nice properties which make decoding and error

correcting easier. Despite a large literature, the known "good" codes are relatively few in

number.

The problem investigated in this section is the random generation of various types

of binary error-correcting codes. While the primary motixation for this work was to learn

VN
, I
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something about random packing densities in high-dimensional spaces, it is also of interes0

to see how the sizes of random codes compare with the sizes of similar codes constructed

deterministically.

Itoh and Solomon [27] consider the random sequential construction of binary codes

for various values of n and d. They begin the construction process by selecting at ran-

dom a single codeword from S. Then the second word is chosen at random from among

all codewords which are at Hamming distance d or greater from the initial word. This

procedure is continued, at each step choosing a new codeword from the collection of all

codewords which are at a Hamming distance of d or greater from all of the codewords

previously selected. The process terminates when it is no longer possible to add another

codeword to the chosen set. This procedure corresponds to the sequential packing scheme

described in Section 1. provided that a pair of codewords are considered to collide when-

ever the Hamming distance between them is less than d. Thus the random (n.d)-code

formed is just a saturated packing of codewords.

Letting M(n.d) denote the number of words contained in a saturated packing. the

center density is denoted

rd, = 2-"E[M(n,d)].

This density may be estimated by

fd, = 2-'M(nd),

where M(n, d) is the average number of words packed in a Monte Carlo experiment. That

is, if N random packing attempts result in codes being formed having X 1,X2, ..X.-

words, then M(nd) = . l X..

The results of numerous packing attempts performed by computer are summarized

in Appendix A. The data for binary cases with 3 < n < 17 are taken from [27]. The data

for cases with n > 17 are results from more recent simulations. It should be noted that

the number of trials per case ranges from 10,000 for cases having n < 10 to only 10 trials

for most cases having n > 17.

F e.
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For example. consider the first entry in Appendix A. This says q 2 (a binary

problem). n = 3 (so binary triples are being considered), and d = 2 (so any two words in

the packing must differ in at least two coordinates). The Monte Carlo estimates for the

mean and the standard deviation are about 3.49 and 0.87. Unfortunately, large standard

deviations are an inherent part of the problem in this case as well as in most of the other

cases considered.

Itoh and Solomon propose that the form n- "d approximates the r,, reasonably well

for the cases d = 2 and d = 3. where the d are constants. They estimate 2 and 3 from

logarithmic plots of the simulation results using the least squares method. Only the cases

for which 10 < n < 17 are used in the fit.

The following tables compare their fitted values with the simulation results. Below,

and throughout the chapter, s.d. will be used to denote the estimated standard deviation

obtained from the sample. .

d =2 cases N

720.6249

n . n -
02 (n -  

- f2.,)/s.d.(f2,,)

8 0.26914 0.27269 12.7

9 0.25215 0.25334 6.1

10 0.23656 0.23720 5.0 .-

11 0.22324 0.22349 0.9

12 0.21179 0.21166 -0.7
'.p.

13 0.20187 0.20133 -1.4 .

14 0.19257 0.19222 -1.5

15 0.18399 0.18411 0.7 *5

16 0.17677 0.17683 0.5 '4

17 0.17018 0.17026 0.3

t

4 of



* 76 Chapter 2 Approximate Packing Densities of Randomly Constructed Code.,

d = 3 cases

13 ,-1.319
Si.

n fl3, (n--c3 - 3,n)/s.d.(3,)

8 0.06430 0.06435 1.5

9 0.05543 0.05509 -13.3

10 0.04834 0.04794 -23.2

11 0.04263 0.04228 -9.9

12 0.03800 0.03769 -12.9

13 0.03410 0.03392 -3.1

14 0.03077 0.03076 -0.3

15 0.02502 0.0280S 2.9

16 0.02557 0.02579 14.1

17 0.02346 0.02381 8.5

It can be seen that the fit is rather good for d = 2 and n > 11; however, the model does

not provide a very good fit for the case of a = 3.

In Chapter 1 it was shown that the expected value of the stopping time 7 could

be approximated by a simple function of p. the probability that two arbitrary points

collide. Similarly, for binary codeword packing. the center densities rd., can be closely

approximated by a function of the ratio E provided that n is large enough. For the space

of binary codewords of length n, the content v is denoted by v, and

v= (#S) - l =2-,.

Let Pd, be the probability that two randomly selected codewords of length n are

separated by a Hamming distance less than d. Then

d-1

3=0

SA~I % * ' ~ ~ ~ i.'*' , S ~ -
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Letting 9d,, denote the ratio pd.,/rd,n, it follows that

d-I

Gd,n=

It is found that
0^-d 23d,

fd(Od, ,)- d1__ + advdfl

approximates the observed rd,n rather well for n not too small, where the od and the 3d

are constants. The values of these constants are determined by performing a weighted

nonlinear least squares fit on each set of points rd,L(d)r fdL(d)+l,' *d,U(d) (d = 1,'"". 10)

using a modified Gauss-Newton algorithm (BMDP program 3R was used). Each case was

weighted by the inverse of the estimated variance of fd,,. The L(d) were determined by

trial and error. and were chosen to be as small as possible while keeping the resulting fit ac-

ceptably accurate. The U(d) are chosen to be as large as possible, the values being limited

only bv the enormous amount of computer time required to perform the simulations.

The following table summarizes the parameters resulting from the curve fittings.

Parameters determined for binary cases

d L(d) U(d) 5d 4d

2 9 17 0.331 0.630

3 12 17 -0.870 0.740

4 10 17 -3.20 0.736

5 12 18 -22.1 0.795

6 11 18 -55.6 0.795

7 15 18 -2.04 x 102 0.833

8 14 18 -7.60 x 102  0.831

9 17 19 -4.48 x 103 0.851

10 17 20 -7.68 x 10 3  0.861

The entries in the next table are the residuals, fd(O,) - r d,, divided by the estimated

standard deviation of d.,-

XiK
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Standardized residuals

n d=2 d=3 d=4 d=5 d=6 d=7 d=8 d=9 d=10

9 0.8 11.9 -6.0 -29.2 .....

10 0.3 11.3 -0.1 -37.5 -39.3 ....

11 -0.3 3.0 0.8 -8.7 0.1 -65.3 - - -

12 -1.6 0.3 -0.8 -0.3 -0.2 42.2 -94.8 - -

13 -1.6 -0.4 0.6 0.9 -0.2 6.4 -46.7 - -

14 -1.5 0.5 0.2 0.1 0.7 4.7 -0.5 - -

15 0.9 -1.9 -0.8 0.4 0.0 0.0 0.9

16 0.9 0.6 0.4 0.1 0.2 -0.2 0.1 -16.2 -52.7

17 0.4 1.2 0.6 -1.4 0.3 1.3 -0.4 -0.9 -0.3

18 - - - 0.4 -1.6 -0.7 -0.8 1.1 -0.1

19 - - - - - -0.6 2.1

20 . ...- - -1.3

For example, consider the d = 2 entry of the first table. This shows that the fit

was done using f2.9, f2,10, • • ", f 2 , 1 7 , and that these points led to the estimates of 0.331 and

0.630 for a2 and 02 respectively. The standardized residuals from this fit are given in the

first column of the second table. For instance, the n = 11 entry shows that f 2(02, 1 1) under

approximates f 2,11 by 0.3 s.d.( 2 ,1). Here

- ,62 + • - 0
a'f2(02,11) = +2,11 9

2 1 11.

Note from the first table above that 3 ; 04, 5 ; :Z 06, 07 ;- 0s, and 9 3 1jo.
Further note that if B(d) = rFd2i, then 3B(k) is approximately constant. This fact will

be discussed further.

If the fd,, are fit with the approximation

gd(Od,) =o. + od.O2.W(
a.
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N? the estimated 6 d remain the same as before. The estimate of 3 gotten from each fit

is shown below, along with corresponding estimates of the standard deviation of 3. The

estimated standard deviations are computed with a provisional means algorithm (see [10]).

d s.d. (6)

2 0.3975 0.0009

3 0.4059 0.0006

4 0.3990 0.0009

5 0.39S5 0.0004

6 0.3995 0.0013

7 0.4022 0.0030

8 0.3962 0.0038

9 0.3800 0.0126

10 0.4074 0.0148

These results suggest that perhaps

rd ,n a T s n c,

for some 3 approximately equal to 0.40. This asymptotic form has the ratio rd.,+1/rd.,

tending to 1 as n tends to infinity, in agreement with an observation made by Itoh and

Solomon [27]. As with other packing settings, there does not seem to be a simple heuristic

argument which suggests the limiting form of the densities.

A Comparison with the Hamming Bound.

The Hamming, or sphere-packing, bound for codes guarantees that any t-error-

correcting binary code of length n containing M codewords satisfyA[1+(n) + (") +_..+ (n)] <2
(see [38]). Since the number of bit errors an (n, d)-binary code can successfully correct is

[(d - 1)/2)],

Vo
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the bound implies that the number of words in any (n,d)-code cannot exceed

2_ .+.+ + ( (

if d is odd, and the number of words cannot exceed

if d is even.

It is also true that any saturated packing which constitutes an (n.d)-binary code

must contain at least

words. This follows from the fact that the addition of each new word to the packed

collection can decrease the number of available sites by at most = (d)"

The above bounds ca'h be used to establish the facts that

rd,, > L(d.n)= [+ d++ d-1) '

and"--

r n 5 U(d, n) d-1(~ + . + Q i ] (d odd)
± (n) + + (2)] (d even).

Table B contains the ratios rdd/L(d, n), and Table C contains the ratios d.,/[U(d, n).

From an inspection of these tables it can be seen that if d is held fixed and n is made

larger, then the ratios of form fd,/L(d, n) tend to increase with n, while the ratios of the

form fd,, //U(d, n) are decreasing as n increases.

Now if the proposed asymptotic form for rd,,, given by

R(dn) dn

is correct, then as n becomes large

R(d,n)/L(d,n)

J.

d,

, - . -" ,, a./%. % .- . V. We m ". . . *" V.r , . a, .€- - ... - -e V - , -
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Table B

The entries of this table are the ratios fd,.,]L(d, n)

n d=2 d=3 d=4 d=5 d 6 d=7 d=8 d=9 d=1O

3 1.75 -..... ..- ,- - -

4 1.94 ...... ...- .

5 2.08 1.94 ........-

6 2.21 2.14 2.21 .... ..-

7 2.32 2.25 2.57 . -€

8 2.42 2.38 2.99 2.43 . ,

9 2.52 2.55 3.32 2.43 2.45 .. ..- p

10 2.60 2.71 3.63 2.86 2.76 .. ..---

11 2.68 2.86 3.95 3.20 3.21 2.74 - - -

12 2.75 3.00 4.30 3.51 3.82 2.44 2.67 - -

13 2.83 3.14 4.56 3.84 4.37 3.03 2.81 -

14 2.89 3.26 4.88 4.17 4.82 3.58 3.05 2.88 -

15 2.94 3.39 5.22 4.48 5.35 4.19 3.86 2.79 2.72 p

16 3.01 3.50 5.46 4.78 5.81 4.62 4.68 3.17 3.03

17 3.06 3.61 5.70 5.09 6.21 4.93 5.44 3.50 2.88

18 - - - 5.34 7.10 5.44 6.18 4.19 3.91

9 .- - - - 5.12 4.25

2 0 ........ 5 .6 8

% %
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5'.

Table C

The entries in this table are the ratios f'd,,,/U(d, n)

n d=2 d=3 d=4 d=5 d=6 d=7 d=8 d=9 d=10

3 0.437 . .. .-

4 0.388 . . . . . . ...

5 0.346 0.727 .

6 0.31.5 0.680 0.368 . . . . . .

7 0.290 0.621 0.321 ...

8 0.269 0.579 0.290 0.551 . . . . .

" 9 0,252 0.554 0.256 0.437 0.295 . . ..

10 0.237 0.532 0.227 0.415 0.242 . . . .

11 0.223 0.512 0.204 0.382 0.210 0.428 - - -

12 0.212 0.494 0.187 0.350 0.190 0.291 0.242 - -

13 0.202 0.477 0.169 0.323 0.169 0.280 0.183 - -

14 0.193 0.461 0.156 0.301 0.147 0.260 0.145 0.329 -

15 0.184 0.448 0.145 0.279 0.131 0.243 0.136 0.237 0.190

16 0.177 0.435 0.133 0.260 0.116 0.216 0.124 0.204 0.151

17 0.170 0.422 0.123 0.244 0.102 0.189 0.110 0.172 0.103

18 - - - 0.227 0.097 0.172 0.097 0.159 0.102

19 - - - - - 0.152 0.082

20 ...- - 0.082
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should tend to something greater than or equal to 1. Similarly,

R(d, n)/U(d, n)

should approach something less than or equal to 1 as n becomes large. It will now be S

shown that the first ratio tends to infinity, and that the second ratio has a limit of zero. .?

Note that L(d, n) is equal to 0-1 , and so

R(d.r ) ______

lim R(d, n) = lim O ,'

= limOO- W .

n d,n

Since
Od,n O(n d- 1

),-

and since a

,> 0

if 3 is about 0.40, it follows that

R(dn)

L(d,n) -o

If d is even then

U(d,n) = 0-.

and it follows that

R(d,n) =

U(d,n) - 'nx

where d 
'

X(d) -2 (d- 1)OT .

Now putting in for f and replacing B(d) by 412 yields

X(d)= d- -(d-1)(2)

2 -1 5
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which is less than zero for all even values of d greater than or equal to two. Hence it now

follows that

lim R(d,n) I 0
n-oo U(d, n)

for even values of d. It may similarly be shown that the above result is also true for the

case where d is odd.

The above results indicate that the proposed asymptotic formula, R(d. n). is consis-

tent with the Hamming bounds. Another well known bound on the size of a code, the

Plotkin bound, cannot be treated in a similar fashion. This is because the Plotkin bound

only applies to cases for which n < 2d. Hence it is not possible to discuss its behavior

when d is fixed and n is allowed to become large. It is also not very meaningful to compare

the observed sizes of the random codes with the values of the maximum code size A(n, d).

This is due to the fact that the values of A(n,d) are not known in all cases, and also

because the values which are known tend to exhibit somewhat haphazard patterns.

2.3. Nonbinary codes

Nonbinary codes may also be sequentially constructed using the method described
V.

in the previous section. If m is a prime number, and q is any power of m, then a code

with symbols from the Galois field GF(q) is called a q-.ary code. An (n, d)-q-ary code is a

subset of n-tuples over GF(q). The n-tuples, or codewords, are such that the Hamming

distance between any pair of them is greater than or equal to d. As before, the Hamming

distance between two words u and v is just the Hamming weight of u - v.

Ternary, or 3-ary, (n, d)-codes were stochastically formed by computer for 2 < d < 7.

As was the case for the binary codes, it is found that the observed f d, can be approximated

by expressions of the form
0 -23,,

fd(Od,,) = Od + Gd,n

Note that for q-ary codeword packing the ratio p/v is given by
d-1

O,,n = Ql)(q-1).
E (n)
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The results of the random packings are summarized in the two tables below. The notation

is the same as before, and additional details concerning the simulation results may be

found in Appendix A.

Parameters determined for ternary cases

d L(d) U(d) 6fd d

2 5 9 -4.53 x 10-2 0.632

3 7 9 -1.52 0.742

4 6 10 -10.4 0.764

5 8 10 -33.5 0.803

6 9 11 -2.32 x 102 0.819

7 10 11 -1.20 x 103 0.836
5%

Standardized residuals

n d=2 d=3 d=4 d=5 d=6 d=7

5 0.6 6.0 3.8 - - -

6 -0.6 6.2 -0.4 - - -

7 -0.3 -0.3 0.4 14.8 - -

8 0.0 1.4 0.5 -0.2 -23.2 -

9 0.4 -0.5 -0.8 0.3 -0.1 -43.9

10 - - 2.4 -1.4 1.0 0.0

11 - - - -0.4 0.0

It is interesting to note that the values /2 and /3 are very close to the corresponding

values for the binary case. It may also be noted that if

2 d=2
B( d) = 1± d >2

d>2

then the values 41(d) (d = 2,..., 7) are approximately equal to one another, and therefore

they are all near some unknown constant/3.

-p,' d ' " €
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Estimates of 3 from the ternary cases

d 4B ( d)

dS d 
1

2 0.399

3 0.408

4 0.390

4" 5 0.416

6 0.408

7 0.407

Similar to the binary case. these results suggest that

0., " as n -c.,

for some 3 approximately equal to 0.40 or 0.41.

It is also interesting to compare the pattern of the values of Var(M(nd)) in the

ternary case with the pattern found in the binary case. For the binary case, Itoh and

Solomon [27] observed that the variance of packing density is larger when d is even and

smaller when d is odd. Also it may be seen from Appendix A that the ratio

Var(M(n. d))/Var(M(n, d + 1))

is generally greater than one when d is even, and generally less than one when d is odd.

This pattern is not evident for the ternary data, as it may be seen from the results given

in Appendix A that the above ratio is greater than one for all d. For the q = 4 and
4~J

q = 5 cases, the values of M(n, d) also strictly decrease as d increases (with n held fixed):

however, it should be mentioned that there is insufficient data in these cases.

For q > 3, packings could be generated for only small values of n due to limitations on

computer time. However, for each combination of q and d the values of - log fd,I,/log 9 d,,

suggest that perhaps

rd,n _ d as n- o-d--
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holds for q = 4 and q = 5. The tables below give the observed values of -log d, / log09 .,

for q =4 and q =5. Additional simulation results may be found in Appendix A.

Estimates of the Od from the 4-ary case

n d=2 d=3 d=4
3 0.679 -

4 0.664 0.748

5 0.657 0.754 0.812
6 0.654 0.754 0.798

7 0.654 0.752 0.789

Estimates of the 3d from the 5-ary cases

q=5

n d=2 d=3 d=4
3 0.695 -

4 0.679 0.758

5 0.671 0.753 0.803

6 0.667 0.754 0.800

2.4. Packing by Lee distance

The Lee distance between two q-ary codewords x = (z,. .. , x,) and y = (yI. .Y,)

is given by

i(x, Y) V(i =

where ,(, ) =I a - bI if Ja - bI <5 q/2

v(a, b) =
q - a - bI otherwise.

Two codewords are considered to collide if the Lee distance between them is less than

some fixed c E {1, 2,..-.

Note that Lee distance is the same as Hamming distance if q is equal to 2 or 3.

But for larger q, Lee distance i a more sensitive metric since the contribution from each

~ ~-----------------------------e-- - ' // - ~ 5 W, W %** 5.~
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coordinate can be something other than just 0 or 1. Lee distance is sometimes used by

coding theorists because it is well suited to phase-modulation. (The Hamming metric is I

well suited to orthogonal modulation schemes.)

Consider first the case where n is equal to 1. Then the metric space employing the

Lee metric is identical to the one described in Section 3 of Chapter 1. A random packing I.

on this metric space may be viewed as placing at random arcs of length c on a circle

of circumference q, with the endpoints of the arcs being situated at integral coordinates.

Nonoverlapping arcs are packed until the length of the longest segment of the circle not

covered by an arc is less than c. Thus, this somewhat degenerate codeword packing

problem is just a variation of a discrete. one-dimensional parking problem. .

Let Mi~c,q denote the number of arcs in the saturated packing. and let the content t
p

of each packed point be , which is just the proportion of the circle covered by each arc.

Then the random packing density is given by

= : L- E[L.' q] .
q

which is just the average proportion of the circle covered by a saturated packing of arcs. P%

Note that P1,1.q is trivially equal to 1, since eventually every segment on the circe will be

covered by a packed arc.

Page [43] and Downton [12] have studied this packing sequence for the special case

of c equal to 2. They proved that as q tends to infinity, Pi,2,q tends to the finite limit

P1,2 = 1 - e- 2 -0.8647.

Using some results of Mackenzie [36], it can be proved that for c E {1,2,• .J

-5

Pl,cq - Pic as q -- oc,

where the sequence of limits {pic)',j remains finite as c tends to infinity. In general. p,.

must be obtained by numerically integrating an expression which arises from a recurrence

technique. However. it is trivial that pii = 1, and for c = 2 the required integral may be

krI
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'. I

evaluated it, closed form to yield Pi.2 I 1 - e-2 in agreement with Page.

Mackenzie's work also suggests that

0.2162 0.0360(2.1) P.c"O .74 ' 6 + + as c-x o.
C C

2  a c_:c

The first two constants are obtained in [36] via numerical integration; however, the co-

efficient of c-' has been estimated empirically by Mackenzie. For c > 2. (2.1) gives pl..-

correct to four significant figures.

It should be noted that 0.7476 is the asymptotic packing density for arcs placod %

uniformly on the circle. This value, denoted by Pl.,. was first obtained by Renyi [47] and.

to be more precise. it may be defined by
p

pi, = lim p.( a), "
I0 %.,

where p-,(a) is just the average proportion of the unit circle which is covered by a satu-

rated packing of arcs of length a whose centers are chosen according to a uniform (0. 1)

distribution. Blaisdell and Solomon [4. found that

p1,--0.74 75 9 79202 53398

by developing explicit bounds which can determine fifteen significant digits correctly. '.

Now consider cases for which n is equal to 2, and where two points collide when-

ever the Lee distance between them is less than d E {2, 3,..}. This is a discrete two-

dimensional analog to the one-dimensional packing problem considered previously in this

section. In general. parking problems in two-dimensions are notoriously difficult and resist

all attempts at mathematical solutions.

Some simulation results are summarized in Appendix B. Letting M2,dq denote the

number of points in a saturated packing, these results indicate that the center densities V

r2,d,q = q- [M2 ,dq]

are approximately constant for each fixed d and various choices of q > 10d. Hence it seems

R U Ok jr '.V N
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likely that

r2.d.q- r2d as q - x (d > 2)

for some undetermined sequence of values r2,2,r 2.3 , r2 4 ,. For example, consider the

eight entries having n = 2 and d = 3. These results certainly suggest that the r2,3. ma.

tend to a limit around 0.1398 as q becomes large.

Let f2dq denote the observed average of q- 2 .2d.q for all simulation trials performed

with parameters d and q, and let f2,d be the average of all of the f2.d,q for which q >_ 10d.

The values f. (d > 2) shown below will serve as estimates of the limiting values r2,

(d > 2).

Estimated limits for the center densities

d f2.d

2 0.3642

3 0.1398

4 0.08025

5 0.04903 -''..

6 0.03415 '.

7 0.02453

8 0.01882

9 0.01467

10 0.01186

11 0.009722

12 0.008176 %

Although it is difficult to approximate the above limiting densities analytically, sev-

eral relationships among the center densities can be observed. In what follows, a scheme is :I

developed for producing planar densities from the center densities. Then it will be shown

how relationships among the limiting center densities and among the limiting planar den-

sities can be approximated by simple functions of the parameter d. Finally. it will be

shown that both approximation schemes can be used to produce estimates of an overall i

, 
--
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;- a:d that the two methods produce estimates wkhich aree clo~ely with

Let 0.; qp. 1., where P2.d.q is the probability that two points collide in the (d.q)

case. Then
d-2

92.d = 1 + 4 E(d - I
)=O

= 2dd- 1)+ 1.

N',.,, su;:'~oy. tll&i edcl. packed poili serve, a th, puit,:, i .' , a

shaped configuration of r'2.d points which are fixed relative to the position point. Th'

contents 122. 1'.3, r2,. are taken to be as large as possible. subject to a constraim

requiring that the diamonds surrounding two disjoint points should cowitain no conlmon

points. For d odd. t 2.d = (d2 -r 1)/2. The diamond consists of a rov of d poinlt centered

on the position point, and sandwiched around this row are pairs of snccpssje> smaller

rows of d - 2. d- 4.- --.3. and 1 points, each centered on the position point. For d even.

t'2d = d2 /2: however, it is now not possible to have the position point being at the exact

center of the configuration. The diamond consists of a row of d points, sandwiched between

pairs of rows having d - 2. d - 4..... 4 and 2 p' - t The position point is one of the two

centermost points.

Even though the diamond shaped c, fgurations described here will not overlap if

they are positioned on disjoint points, the packing problem considered here is not always

the same as the problem of packing such oriented diamonds on a q by q torus shaped lattice.

The problems are different if d is even. This fact can be established easily for the d = 2

case, since it is clear that the two "diamonds" {(r, s), (r+ 1,s)} and {(r, s+ 1), (r+ 1, s+ 1)}

do not overlap even though the Lee distance between the position points (r, s) and (r, s + 1

is less than two. A similar argument can be used to handle any other even valued d.

Define limiting densities {P2.d})'d 2 by

P2,d = V2,dr2,d (d > 2).
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92 Chapter 2 Approximate Packing Densities of Randomly Constructed Codes

and let

P2.d r2.di2.d (d =2,.. .,12)

estimate P2.d. The values of these estimates are given below. Note that for each even

value of d, p2.d is much closer to 02.drl than to P2,d-l.

Estimates of limiting planar densities
a,

d 02.d

2 0.72848

3 0.69876

4 0.64197

5 0.63743

6 0.61464

7 0.61331

S 0.60233

9 0.60127

-. 10 0.59317

11 0.59305

12 0.58866

Unlike the n = I case, the P2.d are not given by an expression similar to (2.1):

however, several relationships among the p2.d and the r2,d are apparent. Letting

Ad = P2,d-/P2.d+l (d=4,6,8,...)

and

45d = r2.d/r2.d+l (d > 2),

it may be seen below that

Ad=I+(d + 1)2

d 4

approximates Ad and that

{Od+1f/O (d even)

+ a + - (dodd)
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approximates od. id is defined by P2.d-Ih P l, and Qd is defined similarly.

Comparison of approximation with estimates

d Ad id

4 1.098 1.096

6 1.038 1.039

8 1.020 1.020

10 1.012 1.014

Comparison of approximation with estimates

d Od Oa

2 2.600 2.606

3 1.741 1.742

4 1.640 1.637

5 1.432 1.436

6 1.393 1.392

7 1.303 1.303

8 1.283 1.284

9 1.233 1.236

10 1.221 1.220

11 1.189 1.189

The expression

(2.2) P2.d-I/P2,d+1 2z 1 + d-4(d + 1)2 (d= 4,6,8,...)

and the values 12.d (d = 3.5, 7.9.11) may be used to obtain approximations for

P2.-, = lim P2 .d.

d- ~.c
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It follows from (2.2) that

(2.3) P2.0c P22,-i {h + (2k +1)2 (j= 2,3,--.).k=j

Using

i [+ (2k 4- 0)2]
k=25o (2k,

>01+ 4k 2 + 4k + 1

k=2s 16k4

k=25

> 1010226

and

+ 3 6ox(2 +1)2(k1+

-- (2k 1

4 16k0
{k=25 +k I

{xp (4 6 k=k-2) + ;3~ ( + ) dx}
< 1.010476

it is possible to obtain upper and lower bounds from (2.3) which are not too burdensome

to compute. Given below are upper and lower bounds of P2,,o based on the estimates 15 .d.

for d equal to 3, 5, 7, 9, and 11.

• S
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Bounds of P2,o, obtained from (2.3)

(d = 2j - 1)

d lower bound upper bound

3 0.5656 0.5658

5 0.5664 0.5665

7 0.5655 0.5657

9 0.5654 0.5655

11 0.5644 0.5646

Alternatively,

p2,d/P2,oo = 11 ( V2.k 1k)
k= \V2,k+ l  0

suggests that P2., may be approximated by

260000-1
(2.4) f2.dV2.d \ (v.k -k

L =d k+

Note that the product is truncated so that it can be evaluated by computer. The estimates

of P2., obtained from (2.4) and the r2.d (d = 2, 12) are given below.

,
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Approximations of P2.o, obtained from (2.4)

d (2.4)

2 0.5671

3 0.5657

4 0.5654

5 0.5666

6 0.5650

7 0.5657

8 0.5656

9 0.5655

10 0.5641

11 0.5645

12 0.5646

Note that for each value of d, the estimate obtained from (2.4) is consonant with the

upper and lower bounds provided by the previous method. Assuming that the variation

in the estimates is due to chance. it seems reasonable to suppose that P2., is some value

close to 0.565 or 0.566. It should be noted that these estimates were obtained by assuming

that the densities really do follow the pattern observed above. It is not feasible to check

out the accuracy of the approximations by performing Monte Carlo experiments using e
J6

extremely large values for d.

Now instead of keeping n fixed at 2, consider randomly packed 4-ary (n, 2)-codes for

n = 3,4,.... Similar to the corresponding Hamming distance cases, it appears that the

ratios -logr2.,,/log02,n (n = 3,...,7) are approximately constant. suggesting that the

densities might be asymptotically equivalent to

0 as n -

for some 42. where 02,., = q' p = 2n + 1.

P.-
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Estimates of 02

n - log f2,. /log 02,n

3 0.596

4 0.597

5 0.602

6 0.604

7 0.607

Likewise, the corresponding ratios for the d = 3 cases tend to approach a constant 33 as

n becomes large. Here 03,, = qfp = 2n 2 + n + 1.

Estimates of 33

n - log 3.,/ log 03.,
4 0.760

5 0.753

6 0.749

7 0.747

2.5. Other metrics

Square Box Metric

Consider packing on the space of q-ary codewords of length 2 using the metric given

by

,U(Xy) = nayXI(XI, Y) V(X2, y2)},

where v is a metric defined in the previous section. If two points collide whenever the

distance between them is less than c, then the packing sequence corresponds to packing c

by c blocks of points on a q by q torus shaped lattice of points so that the packed blocks

are pairwise disjoint.

For various combinations of c and q, the packing sequence described above was re-

peatedly simulated by computer. The results of the computer trials are summarized in

Appendix C. For example, the first five cases given in Appendix C show the results of

If tp -''e
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packing 2 by 2 blocks of points on torus shaped lattices of five different sizes. The sizes

range from 23 by 23 to 35 by 35. In each of the five cases, it can be seen that the average

planar density observed does not differ much from the overall average of 0.747 obtained

from combining the results of all of the cases.

Letting Mc,q denote the number of points in a saturated packing, the random packing

density may be defined by
pc,q = (c 2 /q 2)E[mq]"

P' EAf,q •.-

Based on the simulation output and the knowledge that an analogous metric in a similar p

one-dimensional setting produces limiting densities, it seems reasonable to expect that

Pc,q - Pc as q - oc

for some sequence {Pc)c2. Letting cq denote the observed average of (c 2 /q2)% .. p: is

estimated by averaging all of the #cq for which q > 10c.

Similar to the n = 1 case of the previous section, it is found by curve fitting that the

Pc can be closely approximated by an expression of the form

2V
(2.5) 2o + .Ic- + c 2 .

Performing a least squares fit on the values p2, 33," - - 9 yields the approximation

0.3142 0.1092Pc -Pc = 0.5626 + + ,
c c

2

It may be seen below that this approximation formula does rather well. Also shown below

are the least square estimates based on the model

Ip.'
(2.6) Pc = Poo'Y ,

which are given by

pc = 0.5622(1.766)1/c. ,4u

It should be noted that while two models yield fits of almost identical quality, the model

given by (2.6) has one less parameter than the model given by (2.5).
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Results for square box metric

c A A .o*: s.d. (0c)

2 0.7470 0.7470 0.7470 0.0007

3 0.6794 0.6795 0.6795 0.0007

4 0.6483 0.6480 0.6480 0.0007

5 0.6301 0.6298 0.6299 0.0005

6 0.6177 0.6180 0.6180 0.0005

7 0.6092 0.6097 0.6097 0.0006

8 0.6029 0.6036 0.6036 0.0007

9 0.5999 0.5989 0.5988 0.0007

Note that both models yield nearly the same value for P2., = lini-_: p.. The first

model gives p2. = 0.5626, while the second model gives P2,. = 0.5622. P2.x may be

interpreted as the limiting proportion of a unit torus covered by a saturated packing of

squares of area r as r tends to zero, when the centers of the squares in the packing sequence

arise from a uniform distribution over the torus.

The values of the quantity

A~2 -r2;'P.

produced by the two estimates of P2., are 0.0025 and 0.0022. These agree closely with

the estimates of A2 obtained by other authors. Akeda and Hori [2], Blaisdell and Solomon

[4], and Jodrey and Tory [30] estimate A2 to be 0.0027, 0.0025, and 0.0021, respectively.

All of these estimates serve to refute Palasti's conjecture (see [44]) that P2,oc = PMoo It is

interesting to note that although the quantity p2., discussed in the previous section may

be interpreted in the same way as P2,,, from this section, its value was estimated to be

slightly larger by the methods of Section 2.4, being around 0.565 or 0.566.

Simple Cubic Metric

Now consider the simple cubic packing sequence on the space of ternary codewords

3'4
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of length n. This packing scheme is described in Section 1.8, and has been discussed

previously by Itoh and Udea (29] and Itoh and Solomon [27).

Letting M, denote the number of n-tuples in a saturated packing the random packing

density is given by

p.= 2-"E[M.].

This follows from the fact that the content v associated with each packed point is equal

to 2"/4" 2- ' . It can be seen below that an expression of the form
Pt

cnn-o / logn 9,

fits the observed P3 . rather well for n not too small. Performing a weighted nonlinear

regression on i7 ... , yields the approximation

(1.031995)- 4
Pn Pn n 0 2 1s 2 3 7 log n" -

The data is taken from [27]. Note that this model does not have the ratio p"+l/P n tending,

to 1 as suggested in [27].

Comparison for the simple cubic packing scheme %

n s.d. (An)
5 0.5144 0.4927 0.0010

'

6 0.4585 0.4508 0.0008
7 0.4214 0.4212 0.0005

8 0.3955 0.3958 0.0007

9 0.3766 0.3762 0.0012

10 0.3625 0.3631 0.0018

11 0.3519 0.3516 0.0013

2.6. Complementary codes
",.,

In Section 2, random binary (n,d)-codes were formed by adding randomly chosen

words to a packed code if the selected word was at a Hamming distance of d or more from
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each word already in the packed set. This section will also consider stochastically formed

binary (n.d)-codes: however, now the criteria for packing new words will be different. Be-

fore describing the packing scheme and presenting the results, a few additional comments

concerning error-correcting codes will be given.

For fixed n and d it is clear that information can be transmitted at the greatest

rate whenever the number of words in the code is as large as possible. A(n,d) denotes

the number of codewords in the largest possible binary code of length n and minimum

distance d. .4(n. d) is known precisely in some cases, while in other cases only upper and

lower bounds are known. MacWilliams and Sloane [38] give relations involving A(n.d).

discuss the bounds on .4(nd). and give values where known. Their book also serves as

an excellent reference on the coding problem in general, as do the books by Peterson and

Veldon [457 and Lin and Costello [35].

Several of the most familiar error-correcting codes exhibit quite a lot of structure

and contain the maximum number of 'odewords, A(n.d). Perhaps the best known of

such codes is the Golay codes. This code has length 24 and minimum distance 8. It has

A(24,8) = 4096 codewords and the Hamming distance between any pair of codewords

is either 8, 12. 16. or 24. The Golay code belongs to the class of linear codes and has

numerous interesting structural properties. see Thompson [58]. Among these properties is

the fact that if u is a codeword then so is u', where u" is the complement of u. i.e. u" has

a one in each position where u has a zero and vice versa. Codes possessing this property

will be called complementary codes.

For various combinations of n and d, complementary codes were stochastically gener-

ated using a computer. Each of the resulting codes possesses the additional property that

the Hamming distances between all pairs of words belong to a restricted set of values. A

code word of this type having words of length n can arise from the constrained random

packing of binary (n - 1)-tuples using a procedure which will be outlined below.

Itoh (see [26]. [28]) shows that it is not too difficult to stochastically generate a (24. S)-

V code of size .4(24.8). and in about 18X of the possible complementary coding schemes
S..

" 
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a.

with 4 < n < 12 at least one random packing resulted in a code of size A(n.d) being

formed. Naturally. the unrestricted packing scheme of Section 2 may also produce codes

of size A(n d); however, this was observed in only a few of the low dimensional cases. In

some cases (for example. (n.d) = (24.8)) it has been shown that any random code of size

.4(n. d) must be equivalent to an algebraic code of size A(n, d) possessing nice properties.

However, it has not been established that all random codes of size A(n, d) are equivalent

-: to algebraic codes.
I'.

Thus it may be possible to find large codes by restricted random packing. and given

the close connection between error-correcting codes and the packing of n-dimensional

spheres (see [341). denser sphere packings are also possible. It is interesting to note that

extremely dense packings have also been generated stochastically via simulated annealing

(see [13j).

Now the packing procedure will be described. Letting K denote the set of allowable

interword distances. require that'AK be of the form

{d.dl,'.,dmn- d,....,n - di,n - d,n}

where d < d, < ... < d, < n/2. Sequentially choosing (n - 1)-tuples at random from

the set of all binary (n - 1)-tuples, a new selection is added to the packed collection if

the Hamming distances between it and all previously packed selections are elements of K.

Continuing until it is no longer possible to add to the packed set, codewords of length 7

are formed from the (n - 1)-tuples by adding a zero as the nth component. These words.

plus their complements, constitute an (n, d)-complementary code having the property that

the distance between any pair of words belongs to K.

Every such complementary code having 4 < n < 12 and 2 < d < n/2 was repeatedly

- generated. In each case the average observed packing density was calculated. For n and

"" d both even, the densest codes arose from K containing n and all even integers between d

and n - d inclusive. In these cases the complementary codes formed are denser than the

corresponding (n.d)-codes constructed by the method of Section 2. For all other choices
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of n and d, the densest complementary codes were generated by having k = {d. d +

1. - -, n - d - 1. n - d, n}. The simulation results are summarized in Appendix D. Since

the random complementary coding scheme generally produces large codes more frequently

than the unrestricted random coding scheme, and since for the same choice of ( n,d) the

complementary codes can be produced more quickly by computer (remember. (n - 1)-tuples

are being packed in the complementary case), it seems that random complementary coding

may be superior to unrestricted random coding in the search for n, w large codes.

Simulations wore avoided for the cases covered by the two results below. These facts

follow from the following lemma whose simple proof is omitted.

Leinira 2.1. The Ilamming distance between a codeword of even ltazniiig wlei&hm

and a codeword of odd Hamming weight is odd. Otherwise the Hammin gdistan. b, en

two codewords is evoin.

Fact 2.1. Stochalticaily constructed (n.d)-complementary codes with K = {d.d 1 .

•,d,,7 . n - d,.. 1. n - di, n - dn}, where d. d. ",d. n - dm.....n - di and 7) - d are

all odd, will contain exactly four codewords.

Fact 2.2. If n is even, then a stochastically constructed (n,2)-complementary code

with K containing all even integers between 2 and n - 2 inclusive will contain exactly

A(nd) = 2 n-1 codewords.

.For the class of (n, 2)-codes having K = {2, 3,.... n - 3, n - 2, n}, a model similar to

those of Sections 2 and 3 seems to fit the observed densities for n not too small. That is.

letting 02., equal

2 - ' P{two arbitrary (n - 1)-tuples collide} = n + 1,

it is found that the densities are reasonably approximated by

p. 9.614 0.l6992(0.614-)
(2.7) 0.,-° - 0 ..136902n

for n > 9.

Results for cases with K - {n} = {23., n - 2}

',

V...9-: 9 :
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Ti (2.7)

7 0.2S0 0.289

8 0.272 0.268

9 0.251 0.251

10 0.235 0.236

11 0.225 0.224

12 0.212 0.212

13 0.204 0.203

14 0.193 0.194

Similarly. lettingK = {3.4, ..- , n - 4, n - 3, n} produces densities that are approximated

by

(2.8) 9-o,753 4.3400 - 2(0753)In 3.n

for n > 1i, where
n2+ n + 2

03, 2

I'"~

gO; , t ., .,**.*'4*."~'~ % *
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Results for cases with k - {n} = {3.4.....n - 3}

n (2.S)

10 0.0526 0.0462

11 0.04-48 0.0450

12 0.0387 0.0385

13 0.0339 0.0335

14 0.0300 0.0305

2.7. Summary

For randomly packed q-ary (n~d)-codes. evidence has been presented which suggests

that as the dimension n tends to infinity, the center densities are asymptotically equivalent

to expressions of the form

(pl)

Here p is the probability that two arbitrary codewords collide, and r = q-' is the content

associated with each point in the space. This was demonstrated most convincingly for

the case of binary codewords packed by Hamming distance, where additional relations

involving the 3 d were also found. Support was also given for some q-ary cases. and for a

case where Lee distance was used as the metric instead of Hamming distance.

Relations among the packing densities were also found in cases where n was set equal

to 2 and q was taken to be large. One such two-dimensional scheme yielded an estimate

of the planar packing density. P2.w, which agrees closely with estimates obtained by other

investigators. The estimate is the limiting value of a formula which was shown to closely

approximate the packing densities arising from a class of discrete two-dimensional packing

schemes. This method of finding P2.,. differs from those used previously. It is interesting

to note that the formula is of the same form as Mackenzie's formula for the class of one-

dimensional analogs. Hopefully. similar simulations may be done for the three-dimensional

case, and the limiting density obtained may be compared with the results reported in

Blaisdell and Solomon [5].

If
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Chapter 3

Packing Times and Covering Times

3.1. Introduction

In Chapter 2 the time to saturation, T, was defined for a packing sequence on a

metric space (S,pu) with collision criterion 6. For a given packing sequence, T is just the

total number of random independent selections from S. including rejections, required to

achieve a state of saturation. For convenience, T will sometimes be called the packing

time.

It is also possible to define another random variable associted with the process of

sequentially selecting points from the space S of a metric space (S,/p). For each element

S E S. define a coverage set A(s) such that if X is uniformly distributed over S then

P{X E A(s)) = c, for some c > 0. A(s) can be a neighborhood of s, but this is not

necessary. Suppose that C1 . C 2,... are chosen uniformly and independently from S and

'PIN let IW', called the covering time, be defined by

I =min kE{f1 -,...): SC UA(C,)f.

It is said that S is covered by U',i A(Ci) for any j >_ W. Equivalently, it is also said that

the sequence of points C, C2 ... , C, (j 2! W) provide a covering of the space. Random

coverage problems are abundant in the literature, see for example [7], [16], [17], [18], [19],

[20], [24], [25], [40], [42], [49], [50], [51], [54], [57], and [59].

Below, packing and covering sequences are examined on several spaces. In each space,

coverage sets are defined so that for some choice of u and 6 the packing sequence corre-

sponds to randomly packing the coverage sets so that members of the packed collection
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are pairwise disjoint. The distributions of the random variables T and IV are compared

in each case.

%.

3.2. The Continuous Circle

Consider the sequential random packing of arcs of length a < 1 on a circle of unit

circumference. Random points C 1 , C 2 ,.- sequentially chosen from S = (0, 1] serve as the

midpoints of arcs of length a. The collision criterion, 6, is set equal to a, and p is taken

to be the metric described in Section 1.4. For this setting, R6nyi [47] has shown that

the expected proportion of the circle covered by packed arcs at time T approaches the

constant

Ijexp{1 2j1 le- dudt

as the length of the arcs tends to zero.

It will now be shown that E[T] = oc whenever a < .To do this it is convenient to

first define a few terms. When a second arc is fairly packed on the circle. two gaps having

lengths summing to I - 2a are formed. Let G denote the shorter of the two gaps, and let

L denote its length. Note that L is uniformly distributed over (0, - a).

Now define a random variable U as follows. If L < a, let U = 0. If L > a, let U = k

if Ck is the midpoint of the first arc which is packed into G.

Note that the first random arc will always be packed onto the circle, and that the

* expected number of additional selections needed to pack a second arc onto the circle is

I Then given that L = z > a, the probability that a random arc is packed into G is

-., just x - a. Hence, for z > a it follows that

E[U IL =] 1+ 12 + -

1-2a x-a

Yd

-"0' *E~S
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Clearly T > U. so that for any a < 1 and any e between 0 and - 2a it follows that

E[T] _ E[U]
f0 1=2 E[uI L=x]1(l -a)--dx

> J-a dx1 [ _1_d
(l~a),+ x- a

( - log
(2- a)

Since this inequality is true for all e E (0. - 2a) it follows that E[T] = x. Thus the

following theorem has been proved for the case of a < . The proof for the remaining
44

values of a is similar.

Theorem 3.1. For the packing sequence of arcs of length a on a circle of unit

circumference, if a < then E[T] = oc.

Now consider the sequential covering of the circle with random arcs of length a. and

let M(a) = ja-11. Stevens [57] determined that

M(a)

(3.1) P{WV < k) = Z (- 1)j (j) (1 -ja)k-1.
3=0

and Flatto and Konheim [17] used (3.1) to show that

,EF]-= 1 - Af(a)-k( 1
- ka)k- 1

k=1

and

(3.2) E(W] - a-' loga-' as a 10.

Adopting the convention that the ratio of any finite number over infinity is equal to zero,
note that for any arclength a < 3,

.5 E[W]ztw = 0.
5y7
.5E[T]|

Now consider randomly packing and covering the circle with arcs of variable length.

That is, suppose arc midpoints C1 ,C 2 ,..' are selected from S = (0, 1) as before, and let

SF%
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the arc centered on C, have random length Z,. The lengths Z 1 , Z2... are taken to be

i.i.d. random variables having c.d.f. F.

The coverage problem can be described as before, only now the coverage sets
,p.

A, = {s E S : p(s, C) < Z,/2} (i = 1,2,...)

have random size. The packing problem can be described as follows. The coverage set A,

is added to the collection of packed sets if and only if it does not intersect any previously %

packed member of the collection. The packed collection is considered to be saturated

whenever the probability that an additional member can be added is zero.

Siegel and Holst [511 derived an expression for the probability that the circle is com-

pletely covered by arcs of variable length. For the case of

F(x) =x (0 < z < 1),

their result may be written

k

(3.3) P{W < k} = 1 + (2k- 1)! E(-)bj

where
1=L k (21 m, + 1)!

bi (k - j)!j2 k- , 1: (m,,.m ,=),12i )

with the sum being over all sets of non-negative integers m, I , M. such that " m,

k-j. For this case of random arcs having mean length 1, it may be shown that P{1' < k}

is greater than the corresponding probability for arcs of fixed length 1. This is accom-

plished by noting that the first two terms of (3.3) equals P{W < k} for the arcs of equal

length, and then showing that the sequence b2 , b3 , • constitutes a monotonically decreas-

ing sequence. It follows that E[W] < oo for the random arc lengths, since the expectation

is finite for the constant length arcs.

For F(z) = x it is clear that with probability 1 the packed set will not become

saturated. This follows from the fact that with probability 1 each newly packed arc Will

#"df f " I " I or r "me # t -,-." ,. " . ! " . , € t v
.

- ,- "e of a . - "e .- i" '
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be situated such that there are open gaps of positive length on both sides of it. and with

positive probability an additional1 arc of sufficiently small size can be packed into each gap.

Now suppose that F is such that

P{Zj a} =

for some a > 0. Then it is clear that E[WV] < oc since the expectation is finite in the case

of arcs having constant length a, because the arcs of variable length will cover the circle

at least as quickly as the arcs of length a do.

It is still possible to have E(TJ being infinite in this case. For instance, suppose F is

the uniform distribution on (a, b), where 0 < a < b < 1. Then with positive probability the J

second arc selected will form a gap G of length L E (a, b). and given that this event occurs.

L will be uniformly distributed over (a, b). Given that L = X E (a, b). the probability that

I,

an arbitrary arc will be packed into G is

___(x - a)2.

'

(b-a~j(x -z)dz =.
(b a) a2(b - a)

It then follows that the expected number of attempts required to pack the gap with an

arc, given that a < L < b. is

1 16 -2(b - a) d
(b -a) a0 (x - a) 2

These facts are sufficient to ensure that E[T] = oc.

3.3. Interarrival times

Let the random variables TI, T2 ... be defined as follows. If saturation occurs before

the kth point is added to the packed set, then Tk oo. Otherwise, tk j if C is the kth

point packed.

Now define interarrival times U1 , U2 , ... by

U1 = T

C r
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and
T, - Tk-I if Tk < oc
U o r_ if T k = o c .

Note that P{U 1 = 1) = 1 and

P{U2 = k}= pk-l(1 _p) (k = 1,2,...),

where

p = P{C 1 A Cj} (j $ 1).

For the case of packing arcs of length a on a circle of unit circumference.

E[Ul] = 1,
1

E[U2 1 -2a (a < 1/2),

and for a < 1/4

(Ia = a)-' (fIa dx-+I. -a)E[3 = -a2 3a -x a 1 -4a

2log(1f) +1 1

(1 - 2a)
1

1 - 4a + a2 + O(a 3)"

For a < 1/6

E[U] = a A(z)dz + B(x)d + C(z)d+ f D(x)dx)
/ . 2a 1-4a J3a

where
-1 f- dyA(x) = (1 -3a - ) -  1+2 14--

01 - 4a - x y

I -'6 5-a -x x- - +a a

C(B) ( + +2 +2 y'

1-6a + .. ) 7- 3a - x + 1- 4a -z +J 1- a-

and
SD()= (1-4a) - 1 I a +4 1-a-y

I - 6ap 0 1~ 5a -1y
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It may be shown that

EU'4' = 1 + 6a + 33a 2 + O(a 3 ).

and also it is true that
-~ 1

] = 1-6a+ 3a 2 + O (a3 )

For k > 5, an expression for E[Uk] is difficult to obtain. For fixed k.

E[Uk1
E[U,] = 1 - 2(k - 1)a + O(a2)

however, for any particular value a < [2(k - 1)1-1 the approximation

.1 1

1 - 2(k - 1)a

overestimates E[I'k).

3.4. The discrete circle

Consider the sequential random packing of arcs of length c on the discrete circle

of circumference n. Points C 1 ,C 2 ... are uniformly and independently selected from

S = {1,2,. .n}. Letting

r x - Y1 ifIx-y_ 5n/2
1(1, Y) =

n - Ix - yj otherwise.

two arcs with clockwise endpoints C, and C, will overlap if and only if

U(C,,C') < c.

Similarly, the circle can be sequentially covered with random arcs of length c by letting

the coverage sets be given by

A(s) {s,se l,...,se(c- 1)},

where the subtraction is modulo n.

Note that for c = 1 the circle is packed if and only if the circle is covered. Thus the

random variables T and W have the same distribution. Since the circle is not covered

until each member of S has been selected at least one time, and because the waiting times
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between the initial occurrences of elements of S have geometric distributions, an easy

argument yields that

E[W] -
k=O

* It follows that

(3.4) E[W]- nlogn as n - oc.

Since E[W] is finite,

E[W]Ej--T] 1

for the case ofc= 1.
p.

The distribution of i'. or equivalently of T. may be determined in this case by making

use of the method of inclusion-exclusion. It is found that

P{W < k} = (1- 1j/n )k (k > n),

J=0

and further, if n is not too small, it can be seen that the approximating expression

f1Psw < k) .exp(-n )

does rather well (see [14'). The related case with selections from S not being uniform is

discussed by Flatto and Newman [18]; however, they do not obtain the distribution of IV

exactly.

For c > 2 the distributions of T and IF are difficult to obtain. The determination of

P{W > k} by a scheme analogous to Stevens' method for the continuous circle becomes

unwieldy due to the fact that now two or more arcs may exactly coincide with positive

probability. However, upper and lower bounds for P{W < k} and E[W] may be obtained

via a method based upon an idea of Cooke [7].

Consider a circle of circumference n = cm for some integer m, and let G 1. G 2. ' G,

be a partition of S given by

Gj = {(c - 1)j + 1.(c - 1)j + 2,. ,cj - 1.cj) ( = 1,...,rn).

I
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Note that if S is covered by k random arcs of length c. then each set in the partition must

contain at least one clockwise endpoint C, (i { , .,k}). So if WVG denotes the first

time for which each member of the partition contains at least one endpoint, it follows that

It' < W. This fact and the principle of inclusion-exclusion yield that

P{W < k} P{WG < k}
M

EZ(-1),(M) (1 - j / M~k (k>m).

Note that I'G has the same distribution as I" did for the case where c = I and S =

{1,...,m}. Hence it follows that

E[I11] E[WVGI

n-i -
i-

k=O

which is asymptotically equivalent to ! log r as m tends to infinity. Since 7 = n/c it

follows that E[TV] has a lower bound which is asymptotically equivalent to

n log n sn- .
C C

Now consider a circle of circumferene n= ([[j' -])rn (n, E {1.2...}) and a parti-

tion of S given by

H) {(c' - 1)j + 1,(c'- 1)j + 2,...,c'j - 1,c'j) (j- 1 M...,n)

where c'= [[I]]. Note that if each set in the partition contains at least one clockwise

endpoint, then the circle is completely covered by arcs of length c. So if I"H denotes the

first time for which each member of the partition contains at least one endpoint, then

WH > W. Thus

P{IV < k) _> P{WH < k}

= Z~-iv (1 j,/)k (k > n)

1=0

Z -,:, A '
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and
E[11] _ E[WHJ

rn-i
m - k"k=O

This implies that E IU] has an upper bound which is asymptotically equivalent to

n n
log as n- - .

[[C+1]] [[EWR1

Consider again the circle of circumference n = cm, the partition G1 , G2.. G,, and

the random variable lUG defined previously. Note that for a packing sequence of random

arcs of length c. saturation cannot occur until at least one point has been selected from

every set in the partition. Hence WG < T and E[T] _ E[WG]. Thus E[T, has.a lower

bound which is asymptotically equivalent to
4.

nlog- as n- c.
c c

An upper bound for E T can be obtained as follows. Note that whenever an element

s E S = {,.. ., n} is selected as a clockwise endpoint of an arc, either the arc will be

rejected or the arc will be added to the packed collection of arcs. If the arc is rejected.

then subsequent selections of that element s will also lead to rejection. If the arc is packed. -

then subsequent selections of the same element will lead to rejection. Hence it is clear that

as soon as each element of S has been selected at least once then no further arcs will be

added to the packed collection. Letting W,, denote the first time for which each element

of S has been selected at least once, it then follows that T < 11,7. Thus E[T] !_ E[Wn i ,

and so E[T] has an upper bound which is asymptotically equivalent to

nlogn as n-oc.

Note that the upper and lower bounds for E[W] and E[T] do not indicate which

expectation is smaller. Since it is the case that W < T for some outcomes of C 1 -C 2. ..

while W > T for others, a simulation study was done to see whether or not a relation like

Er " <_ E(T] seems to hold in general. 2000 trials were performed for each of the covering

%%

! 'I-zI
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cases, and 1000 trials were done for each of the packing cases. The results are shown in

the two tables below.

c Ii'
2 200 580.4425 785.470

2 300 938.2030 1307.250

2 400 1311.2655 1829.266

2 600 2079.9205 2992.124

2 800 2894.2290 -

3 300 611.3685 1006.3S9

3 450 979.7920 1694.828

3 600 1371.6885 2417.914

3 900 2174.7680 4018.000

3 1200 3032.0445 -

I. I verv case above, it appears that E'11'] < E[T); however, the case of n = 8

ard c = 2 shows that this is not true in general since there direct calculations give

Eli 151 '1, and ET', = 147/15. It may also be seen from the results above, that for

sn , iarg,, l"E' appears to be proportional to

n nlog( )
I I appar to bo proportional to

7 log(),, )i

I,, f,, -, o ofertations is presented below. A few additional covering results for

V r a I lax, I',,, added

V
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c n IV/(3.5 T/(3.6)

2 200 0.509 1.004

2 300 0.512 1.009

2 400 0.512 0.993

2 600 0.510 0.995

2 800 0.510 -

3 300 0.357 0.957

3 450 0.356 0.963

3 600 0.357 0.960

3 900 0.355 0.969

3 1200 0.356 -

4 400 0.278 -

4 600 0.278 -

4 800 0.279 -

5 500 0.225 -

5 750 0.226 -

5 1000 0.225 -

The interarrival times for adding new arcs to the packed collection are similar to

those for the continuous circle, and they- provide useful anchor points for checking the

simulation programs. For the continuous case, where p = 2a, it can be shown that

E[U] = 1,
1

E[U31 =
I - 2p(1 - p/8) + O(p 3 )

and

=1
S -3p(1-p/4)+O(p 3 )

* .,A'
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For the discrete circle case. where p = (2c - 1)/n.

E[[',] = 1 (n > c),
,

' [E2 = n -- (n > 2c),_, ~u n - (2c -1) 1 - p-'

and for n > 4(c- 1)

E[L'3]= n-4c+3 n 2 c-2
=n - (2c -1) n - (4c -2) + n - (2c- 1) En - (3c -1 +j)

For c = 2.3.4.5 it can be shown that

1
Er] -= 1- 2p(l -p18) + O(p 3 )

as was true for the continuous case. It is not unreasonable to expect that this expression

holds for other values of c as well.

For c = 2 it can be shown that

n - (9 - 6/n) + O(n - 2 )
1

S-3p (I - P+ O(p3)'

and for c = 3 it can be seen that

"E''L ] = n - (15 - 18/n) + O(n 2 )

1

S1- 3p(1 - p) + o(p3 )

These results suggest that

1
1 - 3p(1 - p/4)

might approximate E(T 4 1 reasonably well for c > 4 and n not too small.

3.5. Multidimensional spaces

Consider the metric spaces (S,,p,,) (n = 1.2,...), where

S,= {(u,,. .,,): U, E {1.2,)}}

'A.

.--- -,, A-,, ,?¢:'" "' ' . tf ' ' a ':" ' 4',i$ .. p-b u '"e -'" . _ __ m. __ A S... . , *,'*( -- L -.. -- . - .- .. v . .v.:. : v . :: ... .. I
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and i,, is the metric given by

pn(x,y)= max Ix, - yJ.I<,<n

These simple cubic metric spaces are equivalent to the ones described previously in section

1.8 and section 2.5. The collision criterion. 6, is always taken to be 2.

The packing sequence corresponds to letting the sequence C 1 , C 2 -.' of points from

S, represent the centers of n-dimensional cubes of sidelength 2. The sides of these

cubes are aligned with the sides of the n-dimensional cube of sidelength 4 having ver-

tices {(ui...,u,) : u, E {0.4}}. Since two random points C, and C, collide if and only e

if tt,(C,, CI) < 2. it follows that two points are disjoint only if their surrounding boxes of -

sidelength 2 do not overlap.
I

The coverage sequence can be described as follows. Let U,, denote the n-dimensional %

cube of edgelength 4 which contains the 3 elements of S, in its interior. Then letting

A(C,) denote the box of sidelengih 2 centered on Ci. the covering time It is the smallest ,

integer w for which

U,, = U A(C,).

Note that this definition of It' differs slightly from the one given in section 3.1. because

the space being covered. U, , is not the same as S, .

Let S,, denote the set containing the 2' corner sites in U,,. Thus

S' = {(u,-.. ,u,): u, E {1,3}}.

Note that 14, is covered if and only if each member of S' has been selected at least one

time. Hence it follows that

2n-1
E(1V] F 3' 6E[w] = :k

,(2n~ - k)k=O

3' log2" as n- 0.

Now let M, denote the number of points in a saturated packing. Note that just

before the MAth point was packed, there was at least one site available in which a point
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could be packed. Similarly, just before the (M,, - 1)th point was packed there were at

least two available sites, and in general there are k + 1 or more available sites just previous

to the packing of the (M. - k)th point.

For 0 < k < M, - 1, let Z, be the number of trials required to place the (M, - k)th

packed point, and for M, < k < 2' let Z. equal V It follows from comments above

that
3nE[Zk] < 5

(k +1)'

Noting that 1 Al, < 2n , it also follows that

2-1T< E Z'

k=O

and so 
N

2"-1
E[T] <_ E_ E[Zk]

k=O

2<-1 3n

Z (k + 1)
k---O

It is also possible to show that E[T] < E[IV] and T < TV almost surely. A thorough proof

of this last fact is rather tedious, but not difficult.

For 1 < n < 5 E[1V] was calculated exactly. For 1 < n < 2, E[T] was calculated

exactly, and for 3 < n < 5 E[T) was estimated using simulation results. For 3 < n < 4. p

50,000 trials were done in each case, and 10,000 trials were performed for the case n = 5.

These results are presented below.

n E[W] E[T] E[W)/E[T)

1 4.5 3 1.5 S

2 18.75 10.2 1.84 '

3 73.38 37.60 1.95

4 273.8 142.3 1.92

5 986.2 541.2 1.82
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Cooke [7] has considered sequential coverage sequences for other multidimensional

spaces. From Miles* results dealing with Poisson point processes (see [40" and [411). Cooke

arrives at expressions of the form

E[I]-. - 1 plog- 2 p as p 10,

where p is the probability that two random points collide and -fl and 12 are constants.

It should be noted that Cooke does not offer direct proofs of some of his results, he only

claims that they are suggested by the work of Miles.

For the case of covering the unit two-dimensional torus with random disks of radius

a, it follows form one of Cooke's claims that

(3.7) E[I ] ; 1 log 1
7,a2 a2

for a not too large. The accuracy of this approximation may be checked by comparing

(3.7) with simulation results for various choices of a. In the simulation runs. coverage of

the torus was checked by making sure that each crossing was covered. See [54] for details

of this method in a similar setting.

a no. trials observed (3.7)

0.25 20 23.00 14.12

0.20 20 47.80 25.62

0.15 20 97.15 53.68

0.10 10 251.6 146.6

The results above indicate that Cooke's formula does not provide very good approxi-

mations. Thus it is probably not appropriate to make quick substitutions in results derived

for a homogeneous planar Poisson point process as Cooke did. The work of Domb [11]

also indicates that it is not trivial to obtain sequential coverage results from those derived

for a Poisson point process.

E[W] can be determined exactly in the case of covering the surface of a sphere with

random hemispheres. S is taken to be the surface of a sphere having unit radius. and
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C 1 , C 2 ... are the centers of spherical caps of half angle radius j" For this setting it

follows as a special case of a result of Wendel [59] that

P{w > k) =2-k(k2 - k + 2) (k > 1).

Hence

E[W)1 + -'(k- k + 2)

k= 1
7 7. "

For the related lower dimensional problem of covering a circle with hemispheres. it follows

from Wendel's result that

=[W I+ (2k
k=1

The corresponding packing problems are trivial for both of these cases.

Now consider covering the surface of a sphere in 3-space with spherical caps of half

angle radius a < The results of a simulation study (see [54]) indicate that P{il > Q} is

closely approximated by a formula which is a special case of a result of Miles [40]. Letting

M(a) denote the smallest number of caps for which a covering is possible, an improved

approximation is

1 for k < M(o)p{IU > k} -p 2-k(k- 1) sin 2 a(1 + coso)k- 2  for k> .1(o).

Hence it follows that

sin 2 a k(k - 1)(sin2)k-2
E[11]j :: 11(a) + 2/~ ) sl

k=M(O)

sin 2 'Aa) 2si a) as a 0kf 3(a) I + - -m (a) sin O

1 4 2)

It should be noted that Ml(o) is not easy to determine in general.

The distributions of T for packing sequences on spherical surfaces and tori are difficult

to determine. For the packing of n-dimensional cubes in an n-dimensional torus, a straight-

forward extension of the argument for the one-dimensional case yields that E[T] = CC

provided that the cubes are not too large.

. e V
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3.6. Summary

Although covering problems are abundant in the literature, sequential covering results

concerning E[W] have been considered by only a few authors, including Flatto and Cooke.

Similarly, results concerning T haven't been previously developed even though numerous

investigators have studied random packing densities.

Among the results in this chapter. it has been shown that the ratio E[IV},'E[T] can

be equal to zero, less than one, equal to one, or greater than one. The ratio is equal to

zero for the continuous circle since ET' = x. For the discrete circle, the ratio equals one

if c = 1. and is less than one if c > 2 and n is not too small. The ratio exceeds one in the

simple cubic case discussed in the pre'.'ious section.
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Appendix A: Packing by Hamming Distance

6

Ml is the number of words in a saturated packing of q-ary codewords of length n 6

having minimum allowable interword distance d.
I

q n d E(M) Var(t) # trials

2 3 2 3.493200 0.756829 10000

2 4 2 6.203800 2.815747 10000 "p.
2 5 2 11.0.a0800 6.951967 10000

2 5 3 3.879800 0.225975 10000

2 6 2 20.171000 14.521211 10000

2 6 3 6.213600 0.704846 10000

2 6 4 3.363600 0.8678S,2 10000

2 7 2 37.082400 27.1S2128 10000
2 7 3 9.938700 1.191661 10000

2 7 4 .5.139200 1.673591 10000

2 8 2 6S.899800 50.970457 10000 -

2 8 3 16.461900 0.758824 10000

2 8 4 8.237700 2.544253 10000

2 8 5 3.810200 0.343610 10000 -

"d.

V.

p,.

I|
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2 9 2 129.102400 98.656380 10000

2 9 3 28.378700 1.705657 10000

2 9 4 13.091700 4.987190 10000

2 9 5 4.861000 1.020781 10000

2 9 6 3.288600 0.916802 10000

2 10 2 242.240800 168.855301 10000

2 10 3 49.495400 3.106489 10000

2 10 4 21.141000 10.550774 10000

2 10 5 7.588200 0.738095 10000

2 10 6 4.434000 0.916536 10000

2 11 2 457.204000 310.400785 1000

2 11 3 87.313000 5.254285 1000

2 11 4 34.859000 21.638758 1000

2 11 5 11.676000 0.655680 1000

2 11 6 6.417000 1.654766 1000

2 11 7 3.782000 0.388865 1000

2 12 2 867.509000 558.192111 1000

2 12 3 155.635000 9.639414 1000

2 12 4 58.842000 47.304340 1000

2 12 5 18.122000 0.956072 1000

2 12 6 9.853000 2.429821 1000

2 12 7 3.986000 0.027832 1000

2 12 8 3.310000 0.904805 1000

N-°

V ~ -~ & .~ 4~~ ~p.'~4-~~ ~. W
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2 13 2 1653.710000 959.137273 100

2 13 3 279.360000 22.394343 100

2 13 4 98.880000 116.328889 100

2 13 5 28.770000 1.451616 100

2 13 6 15.040000 4.705455 100

2 13 7 6.060000 0.279192 100

2 13 8 3.960000 0.079192 100

2 14 2 3155.140000 1373.091313 100

2 14 3 504.080000 27.872323 100

, 2 14 4 170.270000 243.128384 100

2 14 5 46.490000 2.131212 100

2 14 6 22.720000 10.203636 100

2 14 7 9.050000 0.654040 100

2 14 8 5.040000 1.048889 100

2 14 9 3.660000 0.570101 100

2 15 2 6029.100000 3039.525253 100

2 15 3 918.1SOOOO 45.280404 100

2 15 4 296.880000 471.056162 100

2 15 5 75.600000 3.474747 100

2 15 6 35.450000 16.654040 100

2 15 7 13.810000 0.620101 100

2 15 8 7.720000 1.880404 100

2 15 9 4.000000 0.000000 100

2 15 10 3.200000 0.969697 100

fe r

d"
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2 16 2 11585.050000 5824.371212 100

2 16 3 1675.980000 104.302626 100

2 16 4 513.730000 1140.300101 100

2 16 5 124.400000 4.606061 100

2 16 6 55.270000 31.855657 100

2 16 7 20.340000 1.297374 100

2 16 8 11.640000 3.424646 100

2 16 9 5.300000 1.080808 100 1

2 16 10 3.920000 0.155152 100

2 17 2 22306.100000 14989.211111 10

2 17 3 3074.400000 291.155556 10

2 17 4 895.500000 3013.166667 10

2 17 5 207.600000 5.155556 10

2 17 6 86.600000 65.600000 10

2 1 7 29.700000 1.344444 10

2 17 8 17.300000 4.011111 10

2 17 9 7.000000 1.111111 10
a2 17 10 4 200000 0.400000 10

2 17 11 3.400000 0.868966 30

2 18 5 345.700000 14.233333 10

2 18 6 147.500000 249.166667 10 1

2 19 7 45.700000 2.011111 10

2 18 8 25.700000 10.455556 10

2 18 9 10.300000 0.455556 10
2 1S 10 6.600000 0.933333 10

2 1S 11 4.000000 0.000000 10

Jo
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2 19 9 15.800000 0.844444 10 p

2 19 10 8.500000 2.055556 10 P

2 19 11 5.000000 1.111111 10

2 20 10 13.800000 2.400000 10

2 20 11 6.400000 0.711111 10

3 3 2 7.474000 0.935792 2000

3 4 2 19.761500 2.621929 2000

3 4 3 6.222000 0.842137 2000

3 5 2 52.81)333 8.612435 1500 '

3 5 3 11.976000 0.616732 2000

3 5 4 4.280000 0.908509 1000

V

3 6 2 142.937000 22.635667 1000

3 6 3 28.155333 1.626956 1500

3 6 4 9.509000 0.614534 1000 '9

3 6 5 3.488000 0.250106 1000

3 7 2 392.005000 73.629899 200

3 7 3 68.813000 4.472504 1000

3 7 4 20.812000 1.492148 1000

3 7 5 7.384000 0.555099 1000 .

3 7 6 3.000000 0.000000 1000

K.

*1
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3 8 2 1086.650000 225.603535 100

3 8 3 170.770000 9.593030 100

3 8 4 46.851000 2.705505 1000

3 8 5 15.295000 0.706682 1000

3 8 6 6.125000 0.169545 1000

3 8 7 3.000000 0.000000 1000

3 9 2 3038.200000 491.326316 20

3 9 3 435.040000 29.957980 100

3 9 4 108.394000 7.145910 1000

3 9 5 31.187000 1.667699 1000

3 9 6 11.759000 0.629549 1000

3 9 7 5.289000 0.780259 1000

3 10 4 253.100000 18.100000 10

3 10 5 66.700000 3.7888S9 10

3 10 6 22.900000 0.766667 10

3 10 7 9.100000 0.544444 10

3 11 6 46.600000 1.377778 10

3 11 7 17.700000 0.677778 10

4 3 2 13.390000 1.283221 4000

4 4 2 46.608000 4.988666 3000 *>

4 4 3 11.035692 0.94794& 3250

2-
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4 5 2 165.513333 19.055703 1200

4 5 3 30.464400 2.446511 2500

4 5 4 8.316000 0.431621 3000

4 6 2 597.522730 87.982516 220

4 6 3 91.980800 5.232618 1250

4 6 4 22.189091 1.263571 1100

4 7 2 2172.600000 527.410526 20

4 7 3 293.000000 18.621622 75

4 7 4 62.960000 3.412525 100

5 3 2 20.997500 1.506247 2000

5 4 2 91.401000 7.225424 1000

5 4 3 17402000 0.945341 1000

5 5 2 405.015000 47.411839 200

5 5 3 62.226000 4.788501 500

.5 5 4 14.246000 1.272757 1000

5 6 2 1823.800000 187.536842 20

5 6 3 233.180000 16.803673 50

5 6 4 43.940000 2.056970 100
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Appendix B: Packing by Lee Distance

Af denotes the number of words in a saturated packing of q-ary codewords of length

n with minimum allowable interword distance d.

q n d E(M) Var(M) # trials

4 3 2 20.074583 13.625545 2400

4 4 2 68.965417 54.404343 2400

4 5 2 242.035000 147.532607 400

4 6 2 869.071429 542.006763 140

4 7 2 3165.300000 2106.900000 10

4 4 3 16.467500 0.763686 4800

4 5 3 49.406250 3.092577 800

4 6 3 155.525000 10.228763 2S0

4 7 3 502.900000 18.936842 20
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Cases having n = 2

d q i # trials

2 10 0.3652 1000

2 20 0.3642 1000

2 30 0.3631 500

2 40 0.3646 100

2 50 0.3644 100

2 55 0.3646 100

2 60 0.3645 100

3 20 0.1397 1000

3 30 0.1395 500
3 40 0.1396 200

3 50 0.1396 200

3 55 0.1399 100

3 60 0.1397 100

3 65 0.1398 100

3 70 0.1398 100

4 30 0.08027 1000

4 40 0.08032 500

4 50 0.08015 500

4 55 0.08023 200

4 60 0.08028 200
4 65 0.08020 100-

4 70 0.08020 100

4 75 0.08034 100
'p
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5 40 0.04902 1000

5 50 0.04894 500

5 60 0.04917 200

5 70 0,04900 200

5 75 0.04915 200

5 80 0.04896 100 .

5 85 .0488 10

5 85 0.04898 100

5 95 0.04908 100

6 50 0.03416 1000

6 60 0.03415 500

6 70 0.03418 200

6 80 0.03415 200

6 90 0.03417 100

6 95 0.0340,, 100

7 60 0.02448 100

7 70 0.02453 100
80 0.0451 10

8 0 0.02451 100

7 100 0.02452 100

8 80 0.01885 100
8 90 .0181 10

8 100 0.01885 100

8 110 0.01882 100
8 120 0.01879 100

8 1200.0189 10
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9 100 0.01467 100

9 105 0.01466 100

9 110 0.01466 100 N

9 115 0.01471 100

9 120 0.01462 100

9 125 0.01465 100

9 130 0.01467 200

I0 11" 0. 113 200

10 120 0.01189 200 h

10 125 0.01186 200

10 129 0.0118S 200

10 130 0.011G6 200

10 132 0.01187 200

11 120 0.009722 200 p

11 125 0.009705 200

11 128 0.009723 200

11 130 0.009733 200

11 132 0.009728 200 r

12 125 0.008162 100

12 126 0.008154 100 4%;

12 127 0.008188 100 p

12 128 0.008165 100

12 129 0.008204 100

12 130 0.008178 100

12 131 0.008161 100,

12 132 0.008194 10012 1320.00894 10

'S

A
•'
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Appendix C: Packing Square Boxes v

is the average proportion of a q by q torus shaped lattice covered by a saturated

packing of d by d blocks.

d q # trials .S.

2 23 0.7471 100

2 26 0.7433 100

2 29 0.7482 100

2 32 0.7496 100

2 35 0.7470 100 I

3 35 0.67&6 100

3 40 0.6807 100

3 45 0.6785 100

3 50 0.6817 100

3 55 0.6774 100 .

4 60 0.6488 100

4 65 0.6498 100

4 70 0.6484 100

4 75 0.6479 100 "

4 80 0.6467 100
Ir

5 80 0.6328 100

5 90 0.6304 100

5 100 0.6280 100

5 110 0.6284 100

5 120 0.6307 100



6 107) 0.6169 100

6 110 0.6200 100

6 115 0.6174 100

6 120 0.6176 100 S
6 125 0.6166 100 -

7 113 0.6097 100 -

7 116 06101-10

7 116 0.61017 100

S122 0.6095 100

7 125S 0.60,;0 100

112 0.031 10

8 112 0.6032 100

8 122 0.601.5 100

S127 0.6035 100

8 132 0.6031 100

9 120 0.6017 100

9 123 0.5994 100

9 126 0.6005 100

9 129 0.6003 100

9 132 0.5976 100
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Appendix D: Complementary Codes
ke

n is the word length

A(n.d) and K are defined in Section 2.6

max is the number of words in the largest randomly formed code

min is the number of words in the smallest randomly formed code
p

mean is the average number of words randomly packed

r is the observed center density

r" is the observed center density for the corresponding case where the packing was

done by the method of Section 2.2

n C - {n} .4n.d) niax min mean r

4 2 8 8 8 8.000 0.500 0.388

5 2.3 16 10 8 9.344 0.292 0.346

6 3 8 4 4 4.000 0.063 0.097

6 2.4 32 32 32 32.000 0.500 0.315

6 2.3.4 32 32 12 21.868 0.342 0.315

7 3.4 16 16 16 16.000 0.125 0.078

7 2.5 64 14 8 12.805 0.100 0.290

7 2.3.4.5 64 44 16 35.875 0.2;0 0.290

8 4 16 16 16 16.000 0.063 0.032

8 3.5 20 4 4 4.000 0.016 0.064

8 3,4,5 20 16 16 16.000 0.063 0.064

8 2,6 128 16 8 14.616 0.057 0.269

8 2,4.6 128 128 128 128.000 0.500 0.269

8 2.3,5.6 128 26 16 23.784 0.093 0.269

8 2.3,4,5,6 128 128 52 69.631 0.272 0.269

I,
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9 4.5 20 16 16 16.000 0.031 0.026

9 3.6 40 8 8 8.000 0.016 0.055

9 3,4.5.6 40 32 20 24.995 0.049 0.055

9 2.7 256 18 8 16.522 0.032 0.252

9 2.3.6.7 256 18 8 17.006 0.033 0.252

9 2.4.5.7 256 74 32 50.684 0.099 0.252

9 2,3,4.5,6,7 256 158 98 128.318 0.251 0.252

10 5 12 4 4 4.000 0.004 0.007

10 4.6 40 32 20 24.998 0.024 0.021

10 4.5.6 40 28 4 9.620 0.009 0.021

10 3.7 r72.79] 4 4 4.000 0.004 0.048

10 3,5.7 [72,79] 4 4 4.000 0.004 0.048

10 3.4.6.7 _72.791 32 16 25.475 0.025 0.04',

10 3,4,5,6.7 [72.79] 52 42 47.260 0.046 0.048

10 2.. 512 20 8 18.457 0.018 0.237

10 2.3.7.S 512 20 S 18.234 0.018 0.237

10 2.5.8 512 20 8 17.540 0.017 0.237

10 2.4,6,S 512 512 512 512.000 0.500 0.237

10 2.3.5.7.S 512 40 16 35.031 0.034 0.237

10 2.3.4.6.7,8 512 512 32 316.110 0.309 0.237

10 2.3,5,6.A 512 512 36 316.583 0.309 0.237

10 2,3.4.5.G.7.S 512 34- 212 240.520 0.235 0.237

4* -
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11 5,6 24 24 8 23.760 0.012 0.006

11 4,7 [72,79] 16 10 15.784 O.OOS 0.017

11 4,5,6,7 [72,79] 32 24 27.620 0.013 0.017

11 3.8 [144,158] 4 4 4.000 0.002 0.043

11 34,7.8 [144.158] 32 32 32.000 0.016 0.043

11 3,5,6.8 [144.158) 18 12 15.280 0.007 0.043

11 3.4,5,6,7,8 [144,158] 104 84 92.060 0.045 0.043

11 2.9 1024 22 8 20.426 0.010 0.223

11 2.3.8.9 1024 22 8 20.064 0,010 0.223

11 2.4,7,9 1024 112 32 73.250 0.036 0.223

11 2.5.6.9 1024 24 8 20.921 0.010 0.223

11 2.3,4.7.8,9 1024 112 16 42.261 0.021 9.223

11 2.3.5.6,8.9 1024 58 22 35.415 0.017 0.223

11 2.4,5,6.7,9 1024 314 92 189.442 0.093 0.223

11 2,3,4.5.6,7.8,9 1024 530 426 460.100 0.225 0.223

12 6 24 24 8 23.680 0.006 0.002

12 5,7 32 4 4 4.000 0.001 0.004

12 5.6,7 32 24 18 21.810 0.005 0.004

12 4.8 [144,158, 32 32 32.000 O.OOS 0.014

12 4.5.7.8 (144,158] 64 20 34.020 0.008 0.014

12 4,6.8 [144,158] 104 80 91.950 0.022 0.01-

12 4,5.6,7.8 [144.158] 96 40 62.000 0.015 0.014

'a"

b'p.

..
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12 3.9 256 4 4 4.000 0.001 0.038

12 3.4,S.9 256 32 12 25.120 0.006 0.038

12 3,6.9 256 24 16 20.520 0.005 0.038

12 3.5,7,9 256 4 4 4.000 0.001 0.038

12 3.4.6.8.9 256 106 12 78.620 0.019 0.038

12 3,4,5,7.8,9 256 64 44 58.606 0.014 0.038
r.

12 3.5.6.7.9 256 48 30 45.090 0.011 0.038

12 3,4.5.6.7,8,9 256 168 146 157.632 0.038 0.038

12 2.10 2048, 24 8 22.384 0.005 0.212

12 2.3.9,10 204, 24 8 22.060 0.005 0,212

12 2.6,10 2048 24 16 22.440 0.005 0.212

12 2,4.,8.10 2048 134 20 58.040 0.014 0.212 I

12 2.3.6.9.10 2048 26 8 22.544 0.006 0.212

12 2.3.4.8.9.10 2048 134 16 57.173 0.014 0.212

12 2.5.7.10 2048 38 16 34.690 0.008 0.212
I

12 2.4.6.-,10 2048 2048 2048 2048.000 0.500 0.212

12 2.3.5.7,9.10 2048 48 16 43.473 0.011 0.212

12 2.3.4.6.8.9,10 2048 2048 30 1683.946 0.411 0.212

12 2.4.5.7.S.10 2048 116 30 59.549 0.015 0.212

12 2.5.6,7.10 2048 36 20 27.690 0.007 0.212

12 2.3.4.5,7.8,9.10 2048 240 46 110.170 0.027 0.212

12 2.3.5,6,7.9.10 2048 48 32 43.940 0.011 0.212

12 2,4.5.6.7,8,10 2048 2048 128 823.857 0.201 0.212

12 2,3,4,5,6,7,8.2.10 2048 1120 796 867.528 0.212 0.212

I

'

N

I1
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Densest packing schemes

n d K -{n) r

4 2 2 0.500 0.388 0

5 2 2.3 0.292 0.346

6 3 3 0.063 0.097 -S

6 2 2,4 0.500 0.315

7 3 3,4 0.125 0.078

7 2 2,3,4,5 0.280 0.290

8 4 4 0.063 0.032

8 3 3,4,5 0.063 0.064

8 2 2,4,6 0.500 0.269 0
9 4 4.5 0.031 0.026

9 3 3,4,5,6 0.049 0.055

9 2 2,3.4,5,6,7 0.251 0.252

10 5 5 0.004 0.007

10 4 4,6 0.024 0.021

10 3 3.4,5,6.7 0.046 0.048

10 2 2,4.6,8 0.500 0.237

11 5 5,6 0.012 0.006

11 4 4.5,6,7 0.013 0.017

11 3 3,4,5,6,7.8 0.045 0.043

11 2 2,3,4,5,6,7,8.9 0.225 0.223

12 6 6 0.006 0.002

12 5 5,6,7 0.005 0.004

12 4 4,6,8 0.022 0.014

12 3 3,4,5,6,7,8,9 0.038 0.038

12 2 2,4,6,8,10 0.500 0.212

J.'
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20. ABSTRACT

In a sequential packing problem, random objects are uniformly and independ-

ently selected from some space. A selected object is either packed or rejected,

depending on the distance between it and the nearest object which has been pre-

viously packed. A saturated packing is said to exist when it is no longer pos-

'v sible to pack any additional selections. The random packing density is the av-

erage proportion of the space which is occupied by the packed objects at satura-

g tion.

Results concerning the time of the first rejection in a packing sequence are

given in Chapter 1. The accuracy of some common approximation formulas is inves-

tigated for several settings. The problems considered may be thought of as gen-

eralizations of the classical birthday problem.

Exact results concerning random packing densities are generally known only

for some packing sequences in one-dimensional spaces. In Chapter 2, the packing

densities of various computer generated codes are examined. These stochastically

constructed codes provide a convenient way to study packing in multidimensional

spaces. Asymptotic approximation formulas are given for the packing densities

which arise from several different coding schemes. In one special case consid-

ered, a new method is found for approximating a planar density. The result ob-

tained agrees closely with estimates obtained by others. -

In Chapter 3 the distribution of the number of random selections needed to

achieve a saturated packing is considered. In each of the settings examined, the

results are compared with analogous results from an associated random covering

problem.
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